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Abstract—Federated scheduling is a strategy to schedule paral-
lel real-time tasks: It allocates a dedicated cluster of cores to each
high-utilization task (utilization ≥ 1); It uses a multiprocessor
scheduling algorithm to schedule and execute all low-utilization
tasks sequentially, on a shared cluster of the remaining cores.
Prior work has shown that federated scheduling has the best
known capacity augmentation bound of 2 for parallel tasks
with implicit deadlines. In this paper, we explore the soft real-
time performance of federated scheduling and address average-
case workloads instead of worst-case ones. In particular, we
consider stochastic tasks — tasks for which execution time and
critical-path length are random variables. In this case, we use
bounded expected tardiness as the schedulability criterion. We
define a stochastic capacity augmentation bound and prove that
federated scheduling algorithms guarantee the same bound of
2 for stochastic tasks. We present three federated mapping
algorithms with different complexities for core allocation. All
of them guarantee bounded expected tardiness and provide the
same capacity augmentation bound. In practice, however, we
expect them to provide different performance, both in terms
of the task sets they can schedule and the actual tardiness they
guarantee. Therefore, we present numerical evaluations using
randomly generated task sets to examine the practical differences
between the three algorithms.

Index Terms—soft real-time scheduling, parallel scheduling,
federated scheduling, stochastic capacity augmentation bound

I. INTRODUCTION

Multi-core processors are changing the computing land-
scape as the number of cores per chip continues to increase.
There has been extensive prior research on multiprocessor
scheduling, where each task is sequential and can only use
one core at a time. In contrast, parallel scheduling allows
intra-task parallelism where individual tasks are themselves
parallel programs. Therefore, unlike multiprocessor scheduling,
individual tasks can run faster with an increasing number of
cores. Parallel real-time systems are particularly well suited for
computationally intensive tasks with tight deadlines; one recent
example [1] showed that parallelism provides demonstrably
better system performance for an autonomous vehicle.

As for real-time performance and guarantees, different
applications have different requirements and characteristics.
Some have a strict constraint that deadlines must be met and
hard real-time guarantees should be provided; others have
soft real-time constraints and can tolerate tardiness as long
as it can be bounded. In this paper, we focus on soft real-
time scheduling. In particular, we consider stochastic tasks,

which may have large variability in their parameters; the worst-
case execution time could be orders of magnitude larger than
the mean execution time. In this case, the system may suffer
significant utilization loss if we use only worst-case execution
time while analyzing schedulability. Instead, we could use the
mean and variance of task parameters for analysis. For these
tasks, our schedulers guarantee that the expected tardiness of
tasks is bounded.

In this paper, we analyze the federated scheduling strategy
for parallel real-time tasks with implicit deadlines. In this
strategy, each high-utilization task (utilization ≥ 1) is allocated
a dedicated cluster (set) of cores and all the low-utilization tasks
share a cluster composed of the remaining cores. The federated
strategy works in two stages: Given a task set τ , a mapping
algorithm either admits a task set and outputs a core assignment
— which consists of a cluster for each high-utilization task and
a final cluster for all low-utilization tasks — or declares that
it cannot guarantee schedulability of the task set. Therefore,
a mapping algorithm is automatically a schedulability test.
After the mapping is done, the scheduling is straightforward.
A greedy (work-conserving) scheduler is used to schedule
each high-utilization task on its dedicated cluster. Since low-
utilization tasks can be run sequentially, a multiprocessor
scheduling algorithm, global earliest deadline first (global
EDF or GEDF), is used to schedule all low-utilization tasks on
their shared cluster. Notably, this federated strategy does not
require any task decomposition or transformation; therefore, the
internal structure of the DAGs need not be known in advance
in order to use this strategy.

For stochastic parallel real-time tasks with soft real-time
constraints, we choose to analyze the federated scheduling
because of two reasons. First, prior work has shown that
federated scheduling has the best known capacity augmentation
bound of 2 for hard real-time parallel tasks [2]. A scheduling
strategy S provides a (hard) capacity augmentation bound
of b if, given a task set τ and a machine with m cores,
S guarantees no deadline miss if (1) the total utilization
of the tasks in τ is at most m/b and (2) the critical-path
length of each task is at most 1/b of its deadline. Capacity
augmentation bound is an extension of the utilization bound
from sequential tasks to parallel real-time tasks. Similarly, it
indicates how much load a system can schedule. Note that
to guarantee hard real-time schedulability, worst-case values
are used for task parameters. As the federated scheduling



has the best capacity augmentation bound in the worst case,
it is interesting to analyze its performance for the average
case. Second, the federated scheduling is a generalization of
partitioned scheduling to parallel tasks. It assigns dedicated
cores to each high-utilization task, which makes each high-
utilization task being isolated from any interference from other
tasks. Therefore, we could analyze each of them individually
and directly apply result from single server queueing theory
to bound the expected tardiness.

In this paper, we analyze the soft real-time performance
of federated scheduling for stochastic tasks based on average-
case workload. We define a bounded-tardiness stochastic
capacity bound (stochastic capacity bound for short) that
uses expected values for utilization and critical-path length to
provide bounded expected tardiness. In contrast to using a hard
real-time bound, it allows the system to be over-utilized in the
worst case, as long as in average total workload is less than
the bound. The contributions of this paper are:
1) Stochastic federated scheduling for implicit-deadline

stochastic parallel tasks that provides a soft real-time
guarantee of bounded expected tardiness on uniform
multicores. We prove that federated scheduling provides a
stochastic capacity bound of 2 for general DAG tasks. To
our knowledge, this is the first result for stochastic parallel
tasks. We also describe the procedure for calculating the
corresponding (upper bound on) expected tardiness for all
these algorithms.

2) We propose three different mapping algorithms for stochas-
tic tasks: All these algorithms satisfy the same stochastic
capacity augmentation bound and provide bounded tardi-
ness. The three algorithms differ in their calculation for core
allocation. They have increasing computation complexity
(from linear-time to pseudo polynomial time) and also have
increasing schedulability performance or decreasing upper
bound on expected tardiness.

3) We conduct numerical evaluations using randomly gener-
ated task sets to understand the efficacy of the different
stochastic mapping algorithms.

The outline of the paper is as follows: Section II discusses
related work. Section III defines our stochastic task model and
stochastic capacity augmentation bound. Section IV presents the
stochastic federated scheduling strategy and expected tardiness
calculation, and proves that expected tardiness is bounded.
Section V presents the three different mapping algorithms for
core allocation; Section VI proves that all of these algorithms
provide a capacity augmentation bound of 2; Section VII
presents the numerical experiments to compare the three
mapping algorithm. Finally, we conclude in Section VIII.

II. RELATED WORK

Real-time multiprocessor scheduling for tasks with worst-
case task parameters has been studied extensively [3, 4]. In
particular, for implicit deadline hard real-time tasks, the best
known utilization bound is ≈ 50% using partitioned fixed
priority scheduling [5] and partitioned EDF [6]; this trivially
implies a capacity augmentation bound of 2. In comparison,

GEDF has a capacity augmentation bound of 2− 1
m + ε for

small ε [7, 8].
For parallel tasks with hard real-time constraints and worst-

case task parameters, early work considered idealized models
for tasks such as moldable and malleable tasks [9–12]. A
commonly considered model is the parallel synchronous
model, which is a subcategory of the directed acyclic graph
(DAG) model. Many strategies for parallel synchronous tasks
decompose parallel tasks into sets of sequential tasks [1, 13–
16]. Without decomposition, researchers have studied both
synchronous tasks [17] and general DAG tasks [18–22]. For
hard real-time tasks with worst-case parameters, the best
capacity augmentation bound known for general DAGs is 2
using federated scheduling (a partition-like strategy) without
decomposition [2]; 2.6 using GEDF without decomposition [2];
3.73 for rate-monotonic with and without decompostion [1, 2];
and 3.42 for a more restricted class of synchronous tasks [13].

Most prior work on bounded tardiness (and other soft real-
time guarantees) considers sequential tasks with worst-case
parameters [23]. For these tasks, an earliest-pseudo-deadline-
first scheduler [24] and GEDF [25, 26] both provide bounded
tardiness with no utilization loss; these results were generalized
to many global schedulers [27]. Lateness guarantees also have
been studied for GEDF-like scheduling [28]. For parallel tasks,
Liu et al. [18] for the first time provide a soft real-time response
time analysis for GEDF.

For stochastic analysis, there is some prior work on sequen-
tial stochastic tasks. For a resource reservation scheduler, a
lower bound on the probability of deadline misses was derived
in [29]. For multiprocessor scheduling, [30] shows that GEDF
guarantees bounded tardiness to sequential tasks if the total
expected utilization is smaller than the number of cores. We use
this result directly in our algorithms and analysis to guarantee
bounded tardiness to low-utilization tasks. There also has been
some work on stochastic analysis of a system via Markov
processes or approximation [31, 32]. We are not aware of any
work that considers stochastic parallel tasks.

There has been significant work on purely parallel systems,
which are generally built to execute single parallel programs
on pre-allocated cores to maximize throughput. Examples
include parallel languages and runtime systems, such as the
Cilk family [33, 34], OpenMP [35], and Intel’s Thread Building
Blocks [36]. While multiple tasks on a single platform have
been considered in the context of fairness in resource alloca-
tion [37], none of this work considers real-time constraints.

III. STOCHASTIC PARALLEL TASK MODEL

In this section, we formalize the stochastic task model in
which execution time and critical-path length are described
using probabilistic distributions, which is consistent with the
task model for sequential tasks in existing work on stochastic
real-time analysis [30]. We also define the capacity augmen-
tation bound for stochastic tasks with soft real-time tardiness
constraint. Throughout this paper, we use the calligraphic letters
to represent random variables.



Fig. 1: Example parallel DAG job τ1,1 of task τ1 with work (total
execution time) c1,1 = 12 and critical-path length l1,1 = 10. Each
node of the job is drawn as a node with execution time written
in the center. The directed lines indicate dependences between
node. The critical-path is the longest path in the DAG, which is
shown by the dotted line.

A parallel task is represented by a directed acyclic graph
(DAG), such that each node is a sequential segment of
computational work (also called a subtask) and each edge
is a dependence between two subtasks. A node is ready to
execute when all of its predecessors have finished. A task set
τ consists of n tasks τ = {τ1, τ2, ..., τn}, each of which can
be a parallel or a sequential task. An example of a parallel
DAG job is shown in Figure 1.

Like ordinary real-time tasks, stochastic tasks have a fixed
relative deadline Di (= Pi, the period, for implicit deadline
tasks). However, each stochastic task is described using its
stochastic work Ci — total execution time on 1 core, and
stochastic critical-path length Li — execution time when it
is running on a machine with an in infinite number of cores.
Note that both Ci and Li are random variables.

In this paper, the internal structure of each DAG task is
not assumed or used to derive the schedulability analysis. The
execution time of each node from the same task could vary
in different jobs (execution instances), which would result in
varying execution times and critical-path lengths. Moreover,
the internal structure of each job from the same task could
also be different each time. For example, a parallel for-loop
in a program could have different numbers of iterations given
different inputs, resulting in a different DAG structure.

We assume that the expectations E [Ci] and E [Li] of these
random variables are known. Given E [Ci] and E [Li], we can
calculate the expected utilization of a stochastic task τi as
E [Ui] = E [Ci] /Di, and the total expected utilization of the
entire task set as

∑
i E [Ui].

We now specify a few additional parameters that are needed
only if we wish to calculate an upper bound on the tardiness
itself or to optimize this tardiness using our third (ILP-based)
mapping algorithm. First, for all tasks, we must know the
standard deviations δCi and δLi of the execution time and the
critical-path length. Second, for low-utilization tasks, we need
the finite worst-case execution time ĉi for calculating tardiness.
Finally, for high-utilization tasks, we need the covariance
σ(Ci,Li) between work and critical-path length.

The exact distributions of Ci and Li are not explicitly re-
quired in all three schedulability tests. Our linear-time algorithm
can calculate mappings that provide bounded tardiness using

just these parameters. With the distributions, another algorithm
can generate potentially better mappings.

In addition, for analysis purposes, we define some job
specific parameters: ci,j is the actual execution time of job j of
task i and li,j is its actual critical-path length; these are drawn
from distributions Ci and Li respectively. For example, the job
τ1,1 in Figure 1 has a total execution time of c1,1 = 12, which
is the sum of the execution time of all nodes. Its critical-path
length is l1,1 = 10, which is the sum of the nodes on the
critical-path indicated by the dotted line.

We say that the release time of job j of task i is ri,j and
its response time (or completion time) is ti,j . Tardiness Ti,j
of job τi,j is defined as max (0, ti,j −Di). Tardiness Ti of a
task τi is also a random variable; E [Ti] is its expected value.

We now define the capacity augmentation bound for stochas-
tic tasks. In particular, we consider the schedulability criterion
of bounded expected tardiness; that is, a task set τ is deemed
schedulable by a scheduling algorithm S if the expected
tardiness of each task is guaranteed to be bounded under S.

Definition 1. A scheduling algorithm S provides a stochastic
capacity augmentation bound of b if, given m cores, S can
guarantee bounded expected tardiness to any task set τ as
long as it satisfies the following conditions:

Total available cores, m ≥ b
∑

E [Ui] (1)

For each task, Di ≥ b(E [Li] + εi) (2)

where εi is 0 if the variances of Ci and Li are 0, and is an
arbitrarily small positive constant otherwise.

Note that when Ci and Li are deterministic, the variance
of Ci and Li is 0, so εi = 0 and the definition of stochastic
capacity augmentation bound reduces to the definition for hard
real-time constraints based on worst-case task parameters.

IV. STOCHASTIC FEDERATED SCHEDULING
GUARANTEES BOUNDED TARDINESS

In this section, we first describe stochastic federated schedul-
ing; Then we prove that if federated scheduling algorithm can
produce a valid mapping, then it guarantees bounded expected
tardiness; Finally, we calculate the expected tardiness.

A. Stochastic Federated Scheduling Strategy

Just like the corresponding federated scheduling strategy for
hard real-time tasks, the stochastic federated scheduling strategy
classifies tasks into two sets: τhigh contains all high-utilization
tasks — tasks with expected utilization at least 1 (E [Ui] ≥ 1),
and τlow contains all the remaining low-utilization tasks. The
federated scheduling strategy works in two stages:
1) Given a task set τ , a mapping algorithm either admits τ

and outputs a core assignment, or declares that it cannot
guarantee schedulability of τ . Different mapping algorithms
differ in the assignment of ni dedicated cores to each high-
utilization task τi, but ni >

E[Ci]−E[Li]
Di−E[Li]

is always required.
All low-utilization tasks share the remaining nlow = m−∑

τi∈τhigh
ni cores. Each mapping algorithm only admits

a task set if nlow >
∑
τi∈τlow

E [Ui] always holds.



2) Once the mapping is done, the scheduling is straightforward.
The high-utilization tasks are scheduled on their dedicated
cores using a greedy (work-conserving) scheduler. The low-
utilization tasks are scheduled and executed sequentially
on the remaining cluster of cores via a GEDF scheduler.

Note that we chose GEDF to schedule low-utilization tasks,
because of an existing result that shows that GEDF provides
bounded tardiness to sequential stochastic tasks [30]; we can
apply this result directly to low-utilization tasks since they
are executed sequentially by our federated scheduler. Other
multiprocessor scheduling algorithms can be used only if they
provide guarantees of bounded tardiness for sequential tasks.

B. Mapping Algorithms Guarantee Bounded Tardiness

We first analyze high-utilization tasks. Since each of them
has dedicated cores and does not suffer any interference from
other tasks, we can analyze each task τi individually. We use
the following result from queueing theory [38] which indicates
that if the service time of jobs is less than the inter-arrival
time, then the expected waiting time is bounded.

Lemma 1. [KING70] For a D/G/1 queue, customers arrive
with minimum inter-arrival time Y , and the service time X is
a distribution with mean E [X ] and variance δ2X . If E [X ] < Y ,
then the queue is stable and the expected waiting time W is
bounded E [W] ≤ δ2X

2(Y−E[X ]) .

In our context, for each high-utilization task, jobs are the
customers; the inter-arrival time is Y = Di (= Pi); the response
time X = ti,j is the service time for job j of task τi. For
a high-utilization job τi,j , its tardiness Ti,j depends on its
response time ti,j , the tardiness Ti,j−1 of previous job τi,j−1
and deadline Di. In particular, we have Ti,j ≤ max{0, Ti,j−1+
ti,j −Di}. Therefore, the waiting time W is a bound on the
tardiness T .

For a greedy scheduler on ni cores, there are two straight-
forward lemmas (Lemma 1 and 2) derived in [22]. Using the
two Lemmas, we can easily bound the finish time ti,j .

Lemma 2. If a job Ji,j executes by itself under a greedy
scheduler on ni identical cores and it takes ti,j time to finish
its execution, then ti,j ≤ (ci,j + (ni − 1)li,j)/ni.

Thus the response time for a job is bounded by (ci,j+(ni−
1)li,j)/ni. Using properties of mean and variance, we get

E [X ] = E [ti,j ] ≤ (E [Ci] + (ni − 1)E [Li])/ni (3)
δ2X = δ2ti,j ≤ δ2Li

((ni − 1)/ni)
2 + δ2Ci/n

2
i

+2σ(Li, Ci)(ni − 1)/n2i (4)

Note that Lemma 1 states that if E [X ] < Y , then the queue
is stable and the tardiness is bounded. Therefore, to prove the
bounded expected tardiness of high-utilization task, we only
need to prove E [X ] = (E [Ci]+(ni−1)E [Li])/ni < Di = Y .

Theorem 1. A mapping algorithm for stochastic federated
scheduling guarantees bounded tardiness to high-utilization
task τi, if the assigned number of cores ni >

E[Ci]−E[Li]
Di−E[Li]

.

Proof: We first prove (E [Ci] + (ni − 1)E [Li])/ni < Di.

Dini − (ni − 1)E [Li] = ni(Di − E [Li]) + E [Li]

>
E [Ci]− E [Li]
Di − E [Li]

(Di − E [Li]) + E [Li]

> E [Ci]

Hence, E [X ] = E [ti,j ] = (E [Ci]+(ni−1)E [Li])/ni < Di =
Y and by Lemma 1 the tardiness of τi is bounded.

In the stochastic federated scheduling strategy, ni >
E[Ci]−E[Li]
Di−E[Li]

is always required for any mapping algorithm. We
will show later that for all three proposed mapping algorithms,
this is indeed satisfied for each high-utilization task.

Now we analyze the tardiness of low-utilization tasks, since
they share nlow cores and are executed sequentially using GEDF
scheduler. In [30], the following Lemma has been established.

Lemma 3. [Mills10] If a set of sequential tasks τlow is sched-
uled on nlow cores using GEDF and nlow >

∑
τi∈τlow

E [Ui],
then the expected tardiness of each task is bounded.

Since the different mapping algorithms only admit a task set
if E [Ulow] =

∑
τi∈τlow

E [Ui] < nlow and then schedule these
tasks using GEDF, we can conclude that the expected tardiness
of low-utilization tasks is also bounded.

Any task set that the mapping algorithm admits can be
scheduled while guaranteeing bounded expected tardiness;
hence, the mapping algorithm serves as a schedulability test.

C. Calculating Expected Tardiness

Here, we explain how the tardiness is calculated. Even though
all the mapping algorithms provide bounded expected tardiness,
the actual (upper bound on) tardiness can be different, because
the corresponding core assignments (ni for each high-utilization
task and nlow for all low-utilization tasks) are different.

Note that from Section V, we can see that for the BASIC
and FAIR mapping algorithms, the tardiness calculation is not
necessary for producing core assignments. It is only needed in
ILP mapping or to get the actual expected tardiness.

1) Tardiness of High-Utilization Tasks: For each high-
utilization tasks with ni assigned dedicated cores, by Lemma
1 and Inequality (4), the bounded expected tardiness is:

E [Ti] ≤
δ2X

2(Y − E [X ])

≤
δ2Li

(ni − 1)2/n2i + δ2Ci/n
2
i + 2σ(Li, Ci)(ni − 1)/n2i

2(Di − (E [Li] (ni − 1) + E [Ci])/ni)
(5)

2) Tardiness of Low-Utilization Tasks: Since low-utilization
tasks are executed sequentially using GEDF, we can use the
linear-programming procedure described in [30] directly.

We first restate a couple of lemmas from [30] in our
terminology. The first lemma bounds the tardiness of a
hypothetical processor-sharing (PS) scheduler which always
guarantees an execution rate of ûi (henceforth called the PS
rate allocation) to each task τi.



Lemma 4. [Mills10] For a given PS rate allocation such that
E [Ui] ≤ ûi ≤ 1 and

∑
E [Ui] ≤ nlow, the PS scheduler has a

bounded tardiness E [Fi] ≤
δ2Ci

/û2
i

2(Di−E[Ci]/ûi)
.

Using this tardiness bound, they then provide a bound on
the tardiness provided by GEDF for low-utilization tasks.

Lemma 5. [Mills10] For low-utilization tasks scheduled by
a GEDF scheduler on nlow cores, the expected tardiness of
each task E [Ti] ≤ E [Fi] + η+nlowM

nlow−v + ĉi, where E [Fi] is the
expected tardiness of a hypothetical PS scheduler, ĉi is the
worst-case execution time of the task, η is the sum of the
nlow − 1 largest ĉi, M is the maximum tardiness in PS, and v
is the sum of nlow − 1 largest assigned ûi in PS.

All the parameters except E [Fi] are known or measurable
(and bounded). In order to calculate E [Fi], we must calculate
the PS rate allocation ûi for each task τi.

As we will show in Section V, for the BASIC mapping,
there exists a simple calculation of ûi; while for FAIR and
ILP mappings, the following linear program (LP) from [30]
(can be derived using Lemma 4) is used to calculate the PS
rate allocations.

max ζ

s.t. Diûi −
δ2Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1∑

i,E[Ui]<1

ûi ≤ n̂low

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1

where ζ−1 ≥ maxi (
δ2Li

2(ûiDi−E[Li])
) = maxi E [Fi]. Therefore,

solving the linear program providesthe PS rate allocations ûi
as well as a bound on the expected tardiness E [Fi] of the PS
scheduler. Given these values, we can calculate the tardiness
of low-utilization tasks using Lemma 5.

V. MAPPING ALGORITHMS FOR STOCHASTIC
FEDERATED SCHEDULING

We propose three mapping algorithms for stochastic feder-
ated scheduling. The three algorithms differ in their calculation
of ni for high-utilization tasks. They have increasing com-
putational complexity and also have increasing schedulability
performance or decreasing upper bound on expected tardiness:
The first algorithm, BASIC, assigns cores based on utilization;
The second algorithm, FAIR, assumes that the distributions of
execution time and critical-path length are known and assigns
cores based on the values with the same cumulative probability
from task parameter distributions among all tasks; The last
(ILP-Based) algorithm, (ILP), tries to minimize the maximum
expected tardiness.

A. BASIC Federated Mapping Algorithm

For a high-utilization tasks τi, this mapping algorithm
calculates ni, the number of cores assigned to τi as follows:

ni =

{⌈
E[Ci]−E[Li]−αi

Di−E[Li]−αi

⌉
(E [Ui] > 1)

2 (E [Ui] = 1)
(6)

where αi = Di/b− E [Li] > 0 and b = 2.
The remaining nlow = m−

∑
high ni cores are assigned to

the low-utilization tasks. The mapping algorithm admits a task
set as long as E [Ulow] =

∑
low E [Ui] ≤ nlow/b for b = 2.

Note that the major difference between this ni and the one
in [2] is the extra term αi. αi is used to accommodate the
variation of execution time and critical-path length. We set this
value of αi to assign roughly the same number of cores relative
to utilization. Hence, variances are not required to assign cores.

Bounded Tardiness (Schedulability Test): The tardiness
can be bounded for any positive αi since:
1) For E [Ui] = 1, E[Ci]−E[Li]

Di−E[Li]
= 1, so ni = 2 > E[Ci]−E[Li]

Di−E[Li]
.

2) For E [Ui] > 1, since Di − E [Li] > αi > 0, we have

ni ≥ E[Ci]−E[Li]−αi

Di−E[Li]−αi
> E[Ci]−E[Li]

Di−E[Li]
> E[Ci]

Di
= E [Ui] > 1

3) For E [Ui] < 1, E [Ulow] ≤ nlow/2 < nlow.
By Theorem 1 and Lemma 3, the BASIC mapping can
guarantee bounded tardiness for both high and low-utilization
tasks. Therefore, the BASIC algorithm serves as a schedulability
test that runs in linear time.

Tardiness calculation: Now we describe a faster and simpler
method to calculate the upper bound on the expected tardiness
of low-utilization tasks when using the BASIC mapping. This
method relies on the requirement that nlow ≥ b

∑
low E [Ui]

for b = 2. We can simply set PS rate allocation ûi =
min (bE [Ui] , 1). This allocation satisfies the requirement in
Lemma 4; therefore, the PS tardiness is

E [Fi] ≤
δ2Ci

2(û2iDi − ûiE [Ci])
,

and by Lemma 5 the expected tardiness of low-utilization task
under GEDF can be calculated directly as

E [Ti] ≤
δ2Ci

2(û2iDi − ûiE [Ci])
+
η + nlowM

nlow − v
+ êi, (7)

Unlike the FAIR and ILP algorithms, this tardiness calcula-
tion here does not require solving a linear program; it can be
done in linear time.

B. FAIR Federated Mapping Algorithm

We now present the FAIR mapping, which admits more
task sets than the BASIC one, while still providing the
same theoretical guarantees. The FAIR mapping utilizes the
distributions of execution time and critical-path length and
assigns cores based on the values with the same cumulative
probability from distributions among all tasks to provide
fairness in core assignment. The schedulability test in FAIR
still runs in linear time; however, the calculations for core
assignment and expected tardiness are more complex, requiring
near linear time and linear programming respectively.

We denote Ci(p) as the value ci of random variable Ci
when its cumulative distribution function (CDF) FCi(ci) = p
(meaning that the probability that Ci ≤ ci is equal to p). We
denote Li(p) and Ui(p) similarly.

Note that when p = 0.5, Ci(p) = E [Ci] and Li(p) = E [Li].
Additionally, Ci(p) and Li(p) will increase when p increases.



In the FAIR mapping, the number of cores assigned to
high-utilization task τi (represented by n̂i) is calculated below.

n̂i(p) =

⌊
Ci(p)− Li(p)
Di − Li(p)

+ 1

⌋
(8)

=


⌈
Ci(p)−Li(p)
Di−Li(p)

⌉ (
Ci(p)−Li(p)
Di−Li(p)

is not integer
)

Ci(p)−Li(p)
Di−Li(p)

+ 1
(
Ci(p)−Li(p)
Di−Li(p)

is integer
)

where p is the same probability for all tasks and 0.5 ≤ p < 1.
The FAIR mapping will admit a task set if nlow = m −∑
high n̂i(p) >

∑
low E [Ui(p)] for p = 0.5.

Bounded Tardiness (Schedulability Test): It is obvious
that for p = 0.5, each n̂i(p = 0.5) =

⌊
E[Ci]−E[Li]
Di−E[Li]

+ 1
⌋
>

E[Ci]−E[Li]
Di−E[Li]

for high-utilization task. Also, for all low-utilization
tasks, nlow >

∑
low E [Ui(p = 0.5)] =

∑
low E [Ui]. By Theo-

rem 1 and Lemma 3, FAIR guarantees bounded tardiness for
all tasks and serves as a linear time schedulability test.

Dominance in Schedulability: In Section VI, we will show
that n̂i(p = 0.5) ≤ ni (of BASIC mapping) for any task τi and
hence n̂low ≥ nlow. Also, the FAIR algorithm allows E [Ulow]
to be as high as n̂low (instead of nlow/2 allowed by BASIC).
Therefore, FAIR admits strictly more tasks than BASIC.

Core Allocation: n̂i(p = 0.5), the minimum core assignment,
is the minimum number of cores required to guarantee bounded
tardiness for high-utilization tasks. However, directly using it
will result in large tardiness for high-utilization tasks, because
more cores are assigned to low-utilization tasks. To be fair to
all tasks, the FAIR mapping further improves the minimum
core allocation by increasing p until the largest p̂ while still
satisfying nlow = m−

∑
high n̂i(p̂) >

∑
low(Ci(p̂)/Di). In this

way, FAIR in fact increases the core assignment and PS rate
allocation for each task by the same amount according to the
CDF of execution time and critical-path length. This ensures
fairness among all tasks, because p̂ is independent of τi. The
complexity of this core assignment depends on the number of
values of p tested until reaching p̂. In practice, a binary search
only needs at most 6 tests to find p̂ with an accuracy of 0.01.

C. ILP-Based Federated Mapping Algorithm

We now present a third, ILP-Based, mapping algorithm for
stochastic federated scheduling. This algorithm admits exactly
the same task sets as FAIR (though it may find a different
mapping for these task sets); therefore, it also provides the
same theoretical guarantees. However, BASIC and FAIR make
no attempt to balance maximum tardiness explicitly among
high and low-utilization tasks. Compared to FAIR, the ILP
mapping does not require the distributions of execution time
and critical-path length. Instead, the stander deviations and
covariance are used in ILP.

The ILP algorithm converts the mapping problem for high-
utilization tasks into an integer linear program (ILP) that tries
to minimize the maximum tardiness; when combined with the
linear program for low-utilization tasks stated in Section IV-C2,
the resulting mixed linear program indirectly tries to balance
the tardiness among all tasks.

We convert Inequality (5) into a form similar to the expected
tardiness of the PS schedule; that is, we define ζi where ζ−1 =
maxi E [Ti] and ζ is defined in terms of ni. First, for task τi,
let δ2i = max

(
δ2Li

(m− 1)2/m, δ2Ci/2, σ(Li, Ci)(m− 1)/m
)
.

Note that δ2i is bounded and can be calculated using only
the expectation and variance of the task’s execution time and
critical-path length without knowing ni. Now we use the fact
that 2 ≤ ni ≤ m for high-utilization task τi and see that

δ2i ≥ δ2Li
(m− 1)2/m = δ2Li

(m− 1)(1− 1/m)

≥ δ2Li
(ni − 1)(1− 1/ni) = δ2Li

(ni − 1)2/ni

δ2i ≥ δ2Ci/2 ≥ δ
2
Ci/ni

δ2i ≥ σ(Li, Ci)(m− 1)/m = σ(Li, Ci)(1− 1/m)

≥ σ(Li, Ci)(1− 1/ni) = σ(Li, Ci)(ni − 1)/ni.

Now we calculate the upper bound on the variance of δ2ti,j
(from Inequality (4)) using δ2i

δ2ti,j = δ2Li
(ni − 1)2/n2i + δ2Ci/n

2
i + 2σ(Li, Ci)(ni − 1)/n2i

=
δ2Li

(ni − 1)2/ni + δ2Ci/ni + 2σ(Li, Ci)(ni − 1)/ni

ni
≤ 4δ2i /ni

By Corollary 1, the expected tardiness is bounded by

E [Ti] ≤
δ2X

2(Y − E [X ])

≤ 4δ2i /ni
2(Di − (E [Li] (ni − 1) + E [Ci])/ni)

≤ 2δ2i
niDi − (E [Li] (ni − 1) + E [Ci])

=
2δ2i

ni(Di − E [Li])− (E [Ci]− E [Li])
(9)

Now we can set ζ−1 ≥ maxi (
2δ2i

ni(Di−E[Li])−(E[Ci]−E[Li])
) ≥

maxi E [Ti] for high-utilization tasks and get inequality (11).
Combining this definition of ζ with the linear program in

Section IV-C2, we get the following mixed linear program:

max ζ

s.t. Diûi −
δ2Ci
2
ζ ≥ E [Ci] ∀i,E [Ui] < 1 (10)

(Di − E [Li])ni − 2δ2i ζ ≥ E [Ci]− E [Li]
∀i,E [Ui] ≥ 1 (11)∑

i,E[Ui]<1

ûi +
∑

i,E[Ui]≥1

ni ≤ m (12)

ui ≤ ûi ≤ 1 ∀i,E [Ui] < 1 (13)
n̂i(p = 0.5) ≤ ni ∀i,E [Ui] ≥ 1 (14)
ni is integer ∀i,E [Ui] ≥ 1 (15)

We solve this ILP to calculate: integral ni— the number of
cores assigned to high utilization task τi; fractional ûi — a
valid PS rate allocation for low-utilization task τi; and ζ . Using
the resulting ni for high utilization tasks, we can calculate



nlow = m −
∑

high ni, the number of cores assigned to low-
utilization tasks.

Explanation of Constraints: Constraints (14) and (15)
guarantee that each high-utilization task τi gets at least
n̂i(p = 0.5) dedicated cores; therefore Theorem 1 guarantees
its bounded tardiness. Constraint (13) guarantees that the PS
rate allocation is larger than the utilization of low-utilization
tasks; therefore Lemma 4 guarantees bounded tardiness of these
tasks. Constraint (12) guarantees that nlow+nhigh ≤ m. Finally,
Constraint (10) is inherited from the LP in Section IV-C2.

Optimal Greedy Solution to the ILP: General ILP problems
can be hard to solve. However, there is a unique property of
the above ILP — ζ will decrease if at least one ni or

∑
low ûi

increases and the rest remain the same. Relying on this, we
can easily see that a greedy algorithm — starting with the
core assignment (ni and ûi(p = 0.5)) from the minimum
core allocation of the FAIR mapping, iteratively increases
the ni or

∑
low ûi (a high utilization task or the sum of low

utilization tasks) with largest tardiness by 1 until just before
Constraint (12) would not hold — will successfully find the
optimal solution to this ILP problem (provided that the LP in
Section IV-C2 can directly calculate an optimal solution). By
applying the greedy solution, we can reduce the mixed-ILP
problem to an iterative LP problem. Obviously, the maximum
number of iterations needed by the greedy algorithm is m.

Relationship to FAIR: The ILP mapping algorithm admits
exactly the same task sets that FAIR admits: if FAIR admits
a task set (n̂i(p = 0.5) and nlow = m −

∑
high n̂i(p = 0.5)),

then that mapping is a trivially feasible solution to the ILP
since it satisfies all constraints for ζ = 0. On the other hand,
if the FAIR algorithm cannot find a solution, then there is no
feasible solution to the ILP. Therefore, since FAIR provides a
capacity augmentation bound of 2, so does this algorithm.

Faster Schedulability Test: As a consequence of the
relationship with FAIR, we do not have to solve the ILP
to check if the task set is schedulable using this ILP-based
mapping; we can simply run FAIR to check for schedulability
and only solve the ILP to find the mapping if the task set is,
in fact, schedulable.

Tardiness Calculation: On solving the mixed linear pro-
gram, we get ni for each high utilization task and ûi for each
low utilization task. Therefore, we can use Inequalities (5)
and (7) to calculate the tardiness of these tasks, respectively.

Note that the mixed linear program criterion is a little
imprecise; maximizing ζ does not directly optimize the overall
tardiness bound. Instead, it only tries to balance parts of the
tardiness. After applying Inequalities (7) and (5) for calculating
tardiness, the resulting tardiness of each high-utilization task is
actually less than the optimized bound ζ−1, while the tardiness
of low-utilization tasks is actually higher than ζ−1.

To further balance the overall tardiness, instead of using the
strict upper bound of δ2ti,j (from Inequality (9)) in the calcula-
tion of ζ , we can approximate it. The reason we cannot directly
use Inequality (4) to calculate δ2ti,j is because we do not know
ni before we solve the integer linear program. However, we
can approximate δ2ti,j by using n̂i(p = 0.5) instead of ni. Then,

we have δ2ti,j =
δ2Li

(n̂i−1)2/n̂i+δ
2
Ci
/n̂i+2σ(Li,Ci)(n̂i−1)/n̂i

ni
=

δ2i
ni

.
This may provide a better tardiness bound for all tasks.

However, when the worst-case execution time of a low-
utilization task is large, the achieved mapping may still result
in a larger maximum tardiness (for that task) than optimal.

VI. STOCHASTIC CAPACITY AUGMENTATION BOUND
OF 2 FOR STOCHASTIC FEDERATED SCHEDULING

A. Stochastic Capacity Augmentation Bound for BASIC

Theorem 2. The BASIC federated scheduling algorithm has a
stochastic capacity augmentation bound of b =2.

In order to prove Theorem 2, we first prove that the BASIC
mapping strategy always admits all eligible task sets — task
sets that satisfy Conditions (1) and (2) in Definition 1 for b =2.

BASIC admits a task set if, E [Ulow] ≤ nlow/b for b = 2.
Therefore, we must prove that for all task sets that satisfy
Conditions (1) and (2), nlow is large enough for BASIC to
admit the task set.

First, we prove that the number of cores assigned to high-
utilization tasks nhigh is bounded by b

∑
high E [Ui].

Lemma 6. For a high-utilization task τi (1 ≤ E [Ui]), if Di >
bE [L]i (Condition (2)), then the number of assigned cores
ni ≤ bE [Ui] with b = 2.

Proof: For E [Ui] > 1, since b(E [Li] + αi) = Di, so

E [Ci] = b(E [Li] + αi)E [Ui]
⇒ Di − E [Li]− αi = (b− 1)(E [Li] + αi)

Therefore, we can bound ni by

ni =

⌈
E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
<

E [Ci]− E [Li]− αi
Di − E [Li]− αi

+ 1

=
2(E [Li] + αi)E [Ui]− (E [Li] + αi)

E [Li] + αi
+ 1

= 2E [Ui]

For E [Ui] = 1, ni = 2 = 2E [Ui]. Therefore, nhigh =∑
high ni ≤ b

∑
high E [Ui] for b = 2.

Since task set τ satisfies Condition (1), the total utilization∑
E [Ui] ≤ m/b for b = 2. So we have

nlow = m− nhigh ≥ b
∑
i

E [Ui]− b
∑
high

E [Ui] = b
∑
low

E [Ui]

Hence, BASIC’s admission criterion is satisfied and it admits
any task set satisfying Conditions (1) and (2). Since BASIC
always provides bounded tardiness to task sets it admits
(Section IV-B), by Definition 1 this establishes Theorem 2.

B. Stochastic Capacity Augmentation Bound for FAIR

Theorem 3. The FAIR federated scheduling algorithm has a
stochastic capacity augmentation bound of b =2.

To prove Theorem 3, we simply prove if the BASIC admits a
task set, then FAIR does as well; since BASIC admits any task



set that satisfies Conditions (1) and (2) of Definition 1 for b =2,
FAIR also admits them. Since FAIR always provides bounded
tardiness to task sets it admits, this establishes Theorem 3.

First, we show that the minimum core assignment n̂i(p =
0.5) to each high-utilization task by the FAIR algorithm is at
most the number of cores ni that the BASIC algorithm assigns.

Lemma 7. If ni =
⌈
E[Ci]−E[Li]−αi

Di−E[Li]−αi

⌉
for E [Ui] > 1 and n1 =

2 for E [Ui] = 1; and n̂i(p = 0.5) =
⌊
Ci(p)−Li(p)
Di−Li(p)

+ 1
⌋
=⌊

E[Ci]−E[Li]
Di−E[Li]

+ 1
⌋

; then n̂i ≤ ni for all E [Ui] ≥ 1.

Proof: To make the proof straightforward, we use the two
cases from our definition of n̂i in Section V.

For E [Ui] > 1, obviously E[Ci]−E[Li]−αi

Di−E[Li]−αi
> E[Ci]−E[Li]

Di−E[Li]
> 1,

since Di − E [Li] > αi > 0. So we denote ε > 0 and
E[Ci]−E[Li]−αi

Di−E[Li]−αi
= E[Ci]−E[Li]

Di−E[Li]
+ ε

When E[Ci]−E[Li]
Di−E[Li]

is not integer,

n̂i(p = 0.5) =

⌈
E [Ci]− E [Li]
Di − E [Li]

⌉
≤

⌈
E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
= ni

When E[Ci]−E[Li]
Di−E[Li]

is integer, since ε > 0,

ni =

⌈
E [Ci]− E [Li]− αi
Di − E [Li]− αi

⌉
=

⌈
E [Ci]− E [Li]
Di − E [Li]

+ ε

⌉
≥ E [Ci]− E [Li]

Di − E [Li]
+ 1 = n̂i(p = 0.5)

For E [Ui] = 1, n̂i = 2 = ni. Therefore, for all cases,
n̂high =

∑
high n̂i ≤

∑
high ni = nhigh.

FAIR has more cores available for low utilization tasks than
BASIC does, since n̂low(p = 0.5) = m − n̂high(p = 0.5) ≥
m − nhigh = nlow. It also allows the total utilization of low-
utilization tasks to be as high as n̂low(p = 0.5), while basic
only allows it to be nlow/b. Therefore, FAIR admits any task
set that BASIC admits.

Note that FAIR will only increase n̂i to n̂i(p > 0.5) if
it admits the task set. Thus, as far as the schedulability and
capacity augmentation bound are concerned, this will not affect
the proof above. In the most loaded case, n̂i(p̂) = n̂i(p = 0.5).

VII. NUMERICAL EVALUATION

To compare the different performances of these schedulability
tests for stochastic task sets, here, we present a numerical
evaluation on randomly generated task sets with probability
distributions on execution time and critical-path length.

A. Task Sets Generation and Experimental Setup

We evaluate the schedulability results on a varying number
of cores m: 4, 8, 16, 32, and 64. For various total task set
utilizations U starting from 10% to 80%, we generate task
sets, add tasks and load the system to be exactly mU — fully
loading a unit speed machine. Results for 4 and 64 cores are
similar to the rest, so we omit them for brevity.

For each task, we assume normal distributions of execution
time and critical-path length. We uniformly generate the
expected execution time E [Ci] between 1 and 100. For tasks
with small variance, we uniformly generate variance to be
from 5% to 10% of E [Ci]; for tasks with large variance, we let
it be from 5% to 500%. We generate the critical-path length
following the same rules and ensure the average parallelism
E [Ci] /E [Li] is 32. To ensure a reasonable amount of high-
utilization tasks in a task set on m cores, we uniformly generate
the task utilization ui between 0.4 to

√
m. Since we assume a

normal distribution for execution time and critical-path length,
with the expected mean and standard deviation, we can calculate
the worst-case execution time by calculating the value ĉi of the
distribution when the probability of a longer execution time is
less than 0.01. Deadline is calculated by uiE [Ci]

Using the task set setups above, we run each setting for 100
task sets. We conduct two sets of experiments:
1) We want to evaluate the performance of the two schedula-

bility tests: BASIC and FAIR. In addition, we use the
simple schedulability test from the stochastic capacity
augmentation bound as a baseline comparison.

2) We want to evaluate the different tardiness bounds of
each individual task using different federated mapping
algorithms. For task sets that are schedulable according the
BASIC test, we record the maximum, mean and minimum
tardiness of each task set.

B. Experiment Results

1) Schedulability Performance: We evaluate the perfor-
mances of different schedulability tests: BOUND (as a baseline),
BASIC and FAIR. Note that, as we have proved, schedulability
with the ILP mapping algorithm is exactly the same as with
the FAIR mapping algorithm (denoted as FAIR/ILP in the
figure). Also, since the exact variance of a task is not needed
to run these schedulability tests, the calculated schedulability
of task sets with small variance and large variance is the same.
Therefore, we do not include these curves in the figures.

From Figure 2, we can see that across different numbers
of cores, the FAIR/ILP algorithm performs the best, while
BOUND performs the worst. Even though the bound indicates
that task sets with total utilization larger than 50%m may not
be schedulable in terms of bounded tardiness, the two other
linear time schedulability tests can still admit task sets up to
around 60% for BASIC and 80% for FAIR.

Also note that some task sets with 10% utilization are
deemed unschedulable by BOUND. This is due to the critical-
path length requirement for parallel tasks by BOUND. For
a few tasks with 100% utilization, the FAIR algorithm still
guarantees bounded tardiness, because all tasks in the set
are low-utilization tasks, and the GEDF scheduler can ensure
bounded tardiness for sequential tasks with no utilization loss.

2) Tardiness of Tasks with Small and Large Variance: For
task sets for which bounded tardiness is guaranteed, we would
like to compare the guaranteed expected tardiness. Note that
both the LP and ILP optimization in the FAIR and ILP mapping
algorithms only try to optimize the maximum tardiness of the



(a) 8 cores (b) 16 cores (c) 32 cores

Fig. 2: Task Set Utilization vs. Schedulability Ratio (both in percentages) for different number of cores.

(a) BASIC mapping, small variance (b) FAIR mapping, small variance (c) ILP mapping, small variance

(d) BASIC mapping, large variance (e) FAIR mapping, large variance (f) ILP mapping, large variance

Fig. 3: Maximum, mean and minimum tardiness for parameters with small and large variances.

entire task sets. Therefore, it would be more interesting to see
the different expected tardiness bound for the individual tasks.

Figure 3 shows the maximum, mean and minimum expected
tardiness calculated from the BASIC, FAIR and ILP mappings
for task sets with small and large execution time variations
respectively. To make it easy to compare them, we sort all the
figures according to the maximum tardiness of the ILP mapping
for that corresponding setting (low and high variances).

Not surprisingly, BASIC performs the worst among all three
mappings, if we count the number of task sets for which BASIC
generates the largest maximum tardiness. In fact, out of all
randomly generated task sets, 92% and 85% of the task sets
have smaller maximum tardiness with ILP than with BASIC,
given small and large variance respectively. Compare FAIR
and BASIC, 58% and 76% respectively have lower maximum
tardiness under FAIR.

However, we can also see that the maximum tardiness from

the BASIC mapping is comparable to (only slightly worse than)
that from the FAIR mapping, when variances of execution time
and critical-path length are small. It is also comparable to
ILP when the variances are large. This is probably because
all compared task sets satisfy the requirement of the bound.
Therefore, there are enough cores for BASIC mapping to
approximate the better core assignment. Hence, when the
variations are small, one could use the BASIC mapping to
bound the tardiness.

We also find that with large variances, the increase of
maximum tardiness with FAIR is not significant, compared
to BASIC and ILP. This is not surprising for BASIC result,
because it confirms our hypothesis that the BASIC mapping
does not take variation into account when allocating cores.
However, ILP does try to balance the tardiness of all tasks,
considering variance similarly to FAIR.

In fact, comparing FAIR and ILP, we notice that 67% and



58% task sets respectively have smaller maximum tardiness
using ILP. ILP results seem much worse with large variances,
only because for some task sets, the maximum tardiness comes
from low-utilization tasks. Even through ILP can minimize
the tardiness for high-utilization tasks, the LP calculation for
low-utilization tasks only minimize the part of tardiness (the
maximum tardiness of the PS scheduler in Lemma 4) but
cannot directly minimize the overall tardiness in Lemma 5. As
FAIR inflates the parameters for low-utilization tasks, the LP
calculation may result in a better PS rate allocation and hence
smaller tardiness.

VIII. CONCLUSIONS

This paper evaluates the soft real-time performance of feder-
ated scheduling for parallel real-time tasks under a stochastic
task models. It provides a stochastic capacity augmentation
bound of 2 for stochastic tasks with a soft real-time constraint
of bounded expected tardiness. This is the first such result on
stochastic parallel tasks.

The federated scheduling strategy is promising due to its
simplicity since it separately schedules high-utilization tasks
on dedicated cores and low-utilization cores on shared cores;
therefore, one can potentially use out-of-the-box schedulers in a
prototype implementation. It would be promising to implement
the federated scheduling strategy on a real parallel platform to
explore and quantify its performance.

In a more theoretical direction, while it doesn’t make sense
to put hard real-time constraints on stochastic tasks, we should
definitely consider bounded tardiness scheduling of tasks with
worst-case task parameters. Federated scheduling cannot be
used for this objective, since the tardiness of high-utilization
tasks with worst-case task parameters is either 0 or unbounded
by the design of the scheduler. However, other scheduling
policies, such as global EDF could be explored.
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