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Abstract

Developing distributed real-time and embedded (DRE)
systems in which multiple quality-of-service (QoS) dimen-
sions must be managed is an important and challenging
problem. This paper makes three contributions to research
on multi-dimensional QoS for DRE systems. First, it de-
scribes the design and implementation of a fault-tolerant
real-time CORBA event service for The ACE ORB (TAO).
Second, it describes our enhancements and extensions to
features in TAO, to integrate real-time and fault tolerance
properties. Third, it presents an empirical evaluation of
our approach. Our results show that with some refinements,
real-time and fault-tolerance features can be integrated ef-
fectively and efficiently in a CORBA event service.

1. Introduction

Recent research efforts have extended middleware that
implements the Object Management Group (OMG)’s Com-
mon Object Request Broker Architecture (CORBA) [20]
standard, to support distributed real-time and embedded
(DRE) system applications such as avionics mission com-
puting [10], distributed interactive simulation [22], and
computer-aided stock trading [4]. A common goal of these
efforts is to examine how the specific requirements of each
DRE system shape the middleware itself. Many DRE sys-
tems have the following common requirements.
Distributed processing. DRE system components are de-
ployed across multiple endsystems. It is necessary for a
component to be able to invoke operations on other compo-
nents regardless of their locations.
Timeliness and real-time predictability. Many DRE sys-
tems have stringent timing constraints with severe conse-
quences if the specified deadlines cannot be met.
High reliability. Applications like avionics computing sys-
tems may require a very high degree of reliability even in
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the face of faults. Failures in some critical components,
though ultimately unavoidable, must not be allowed to com-
promise the overall reliability of the system.

The CORBA standard addresses the issue of distributed
processing by providing a method invocation model, where
a client invokes an operation on a target object that may
reside locally or on a remote server. This model, however,
may be too restrictive because of the tight coupling between
client and server lifetimes it assumes.

A CORBA event service provides support for decoupled
communication between objects. Instead of using point-to-
point communication, interested event consumers subscribe
for the types of events they need from the event service.
Event suppliers push events to the event service instead of
directly to the consumers. The event service is responsible
for managing how to dispatch the events. This approach
reduces coupling between suppliers and consumers, but it
poses the following new challenges. First, the event service
becomes a mediator for all events and thus might become a
bottleneck for event delivery. Therefore, how to ensure end-
to-end timeliness is a concern. Second, the event service
itself becomes a potential single point of failure. Therefore,
how to provide fault-tolerance for the event path from sup-
pliers to consumers is also a concern.

Hence, how to integrate fault-tolerance and real-time ca-
pabilities in a CORBA event service is an important re-
search problem. Fault-tolerance can be achieved through re-
dundancy. Real-time support requires elimination of delays
to meet timing constraints. It is therefore necessary to de-
termine how to trade off fault-tolerance and real-time prop-
erties carefully, which is the research problem this paper ad-
dresses. We focus on an application domain that has been
important to the DRE systems R&D community over the
past decade, notably systems that use event services to me-
diate communication and/or concurrency among local and
remote software objects. Accordingly, we focus our efforts
on policies and mechanisms to achieve both real-time pre-
dictability and fault-tolerance within an open-source event
service built on top of an open-source real-time CORBA
object request broker, The ACE ORB (TAO) [13].
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In this paper we describe the design, implementation
and performance of a fault-tolerant real-time event service
(FTRTES) and compare its performance to that of TAO’s
real-time event service (RTES) upon which it is based. We
have focused on the robustness of event service subscrip-
tions, so that if an event service crashes the event delivery
paths between event suppliers and event consumers are still
preserved, and after a crash events can still be delivered.
Furthermore, our solution approach offers new configura-
tion options for trading off the latency of supplier/consumer
subscriptions for the number of channel crashes that are as-
sured to be tolerated. Section 2 summarizes TAO’s existing
RTES and FT-CORBA features, which we use and extend in
our FTRTES design and implementation described in Sec-
tion 3. Section 4 describes experiments we conducted to
evaluate our FTRTES implementation. Section 5 describes
related work and Section 6 offers concluding remarks.

2. Overview of TAO’s Real-Time Event Service
and Fault-Tolerant CORBA Features

In the OMG’s COS Event Service specification [12],
suppliers produce events and consumers receive events. Be-
fore sending or receiving events, both suppliers and con-
sumers must connect to an event channel that is responsible
for event delivery. We refer to the connection establishment
operation as an event subscription.

The COS Event Service specification provides two mod-
els for event delivery: push and pull. In the push model,
suppliers send events to the event channel and the event
channel sends them to the consumers. In the pull model,
the event channel polls the suppliers to obtain events,and
the consumers then poll the event channel. The Event Ser-
vice also supports hybrid push/pull models which allow the
suppliers to push events and consumers to pull events or the
event channel to pull events from suppliers and push them to
consumers. TAO’s Real-Time Event Service [10] supports a
push event delivery model and extends the COS Event Ser-
vice with the following additional features.
Event scheduling. The event channel subscriptions can
supply different QoS parameters so that event delivery can
be scheduled with fixed priority, earliest deadline first, least
laxity first or maximum urgency first strategies [7].
Event filtering/correlation. Events can be filtered or cor-
related with other events by type or identifier.
Timer events. TAO’s Real-Time Event Service can be con-
figured to push timer events at specified rates.

The OMG’s Fault-Tolerant CORBA (FT-CORBA) [20]
specification enables CORBA applications to control the
creation of object replicas and supports different fault-
tolerance strategies including request retry, redirection to
different server objects, passive replication to minimize
transmission overhead and active replication for faster re-

sponse times. It also supports fault detection, notification,
and analysis.

The FT-CORBA specification is designed to give appli-
cations a high level of reliability. This reliability is achieved
through entity redundancy, fault detection and recovery. En-
tity redundancy is provided by replication of objects. Sev-
eral replicas of an object, which inhabit different processes
or even different hosts, are managed as an object group.
Clients treat the object group as a logical single object.
The requests made by clients are routed transparently by
the fault-tolerance infrastructure to members of the group.

In a CORBA system, an object is referenced by an Inter-
operable Object Reference (IOR). The IOR contains the ob-
ject key as well as host information such as the address and
port to which to connect. An Inter-operable Object Group
Reference (IOGR) extends the IOR structure by allowing
several profiles, each containing a distinct object key and
host information, within an IOGR. Depending on replica-
tion styles, a client can communicate with the hosts in only
one profile, or in all profiles, at a time.

To maintain state consistency between replicas in an ob-
ject group, FT-CORBA defines three different replication
styles. For cold passive and warm passive replication styles,
only a single member, referred to as the primary member,
executes the operation that has been invoked on the ob-
ject group. If the system suspects the primary member has
failed, a backup member is selected to become the primary
member. In the cold passive style, a logging mechanism pe-
riodically invokes the get state() operation, which must be
implemented by every replicated object, to obtain the state
of the object so that the state can be recorded. During re-
covery, a recovery mechanism invokes the set state() oper-
ation of the new primary to synchronize its state with the
recorded state. In the warm passive style, backup members
periodically synchronize their states with the primary.

In the active replication style, the request issued by
a client is multi-cast to all members of the object group
and each replica executes the requested operation indepen-
dently. The FT-CORBA ORB has to maintain a total order
over the messages which arrive at all replicas and suppress
the repeated replies to the client. Thus clients suffer limited
delay for recovery during fail-over, but do so at a cost of
greater message ordering overhead.

In addition to state consistency, the warm passive and
active replication styles must maintain membership consis-
tency. FT-CORBA specifies ReplicationManagers to con-
trol the membership of object groups as well as fault de-
tectors to detect faults and generate and send fault reports
to ReplicationManagers. There are again two models for
fault monitoring: push and pull. In the pull model, the fault
detector periodically interrogates the liveness of each mon-
itored object. In the push model, the monitored objects re-
port to the fault detector to indicate that they are alive.
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3 Design and Implementation

Figure 1 shows our usage scenario for integrating fault-
tolerance and real-time properties in event-mediated DRE
systems. Event suppliers and consumers use a Fault-
Tolerant Real-Time Event Service (FTRTES) consisting of
primary and backup instances of a replicated Fault-Tolerant
Real-Time Event Channel (FTRTEC). A naming service al-
lows CORBA Interoperable Object References (IORs) to be
registered, stored, and retrieved.
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Figure 1. FTRTES Usage Scenario

As we described in Section 2, FT-CORBA specifies three
different replication styles for providing state consistency:
cold passive, warm passive and active. For both cold pas-
sive and warm passive styles, state consistency is only re-
quired when a backup object takes over for a failed primary
object. In active replication, the backup objects keep their
states consistent with the primary at the end of each client
invocation. Unfortunately, both the cold passive and warm
passive approaches suffer from long and unpredictable re-
covery times which are not suitable for DRE systems. In
cold passive replication, a new primary has to replay every
subscription operation performed since system initializa-
tion. In warm passive replication, the situation may be bet-
ter because the new primary only has to replay subscription
operations performed since the last time it synchronized
with the failed primary. However, the time is still highly
unpredictable. Although active replication has an assured
recovery time after fail-over, it requires totally-ordered reli-
able message delivery, and can significantly reduce system
throughput, especially over low-bandwidth and/or high la-
tency connections.
Solution approach: To overcome the limitations of the
cold passive, warm passive, and active replication styles, we
begin by applying the semi-active replication style [1] to in-
tegrate both real-time and fault-tolerance properties within
our TAO FTRTES implementation as Gokhale, et al., did
within the TAO ORB [8]. We then refine that basic solution
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Figure 2. FTRTES Architecture

approach as we discuss in detail in Sections 3.1 through 3.8.
Figure 2 shows the resulting software architecture of our
fault tolerant and real-time event service. It retains the over-
all structure of the RTES including its consumer and sup-
plier proxies, dispatching, correlation and filter modules. In
addition, state replication, fault detection and group man-
agement modules are added for fault-tolerance purposes.
We now describe the new techniques beyond those used by
the existing TAO RTES and FT-CORBA frameworks, which
we applied in our FTRTES solution approach.

3.1. Subscription vs. transmission

Context: There are two major kinds of operations in
an event service: subscription and transmission. Sub-
scription operations like connect push consumer and con-
nect push supplier are used for registering a consumer or
supplier with an event service to send or receive certain
types of events, and for setting up constraints to correlate
or filter events. Transmission operations like push are only
used to transfer events from suppliers to the event service
and from the event service to consumers. Event subscription
and transmission have different timing and ordering con-
straints in an event service. Event transmission in DRE ap-
plications usually requires predictable low latency and high
throughput. Events’ effect on the state of the event service
itself is also ephemeral as events enter and leave the event
channel.
Problem: Communicating event transmission related state
changes at the middleware level of the endsystem software
architecture can impose significant overhead and jitter on
event delivery latency.
Solution: We decouple replication of state changes due to
subscription from those due to transmission, and at the mid-
dleware level only replicate subscription state changes.
Consequences: Subscriptions occur at a more suitable time
scale for replication and in fact are more essential for the
delivery of events because they establish connectivity from
suppliers to consumers. The loss of subscription state can
affect the correctness of entire event delivery paths, while
accommodating a limited number of lost events may be ac-
ceptable in many applications. However, replicating only
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subscription operations at the middleware level leaves the
protection of events from faults unaddressed. A reasonable
extension to our approach would be to replicate events at a
lower (e.g., SCTP [25]) architectural level.

3.2. Customize state update strategies

Context: We consider two kinds of state update: entire in
which the primary sends its entire state to the replicas each
time and the replicas replace their states with the informa-
tion they receive, and incremental in which the primary only
sends the differences in its state (or requests for operations
that have been executed on it) since the last state update,
and the replicas then update their states accordingly.
Problem: Entire state update would be unduly expensive in
the FTRTES because previous subscriptions would be repli-
cated again each time a new subscription is made. However,
without additional specialization, incremental state update
can suffer from inconsistency if the primary crashes during
replication. For example, suppose A, B and C belong to
an object group, and A is the primary. A tries to replicate a
state update to B and C, then crashes after replication to B
succeeds but replication to C does not. When B becomes
the new primary, it may not be in the same state as C.
Solution: Each incremental state update carries a sequence
number which is used to detect missing state updates. The
sequence number is incremented and the primary sends a
new update each time a subscription operation is performed
on it. If a replica receives an update with a non-contiguous
number, it can request the missing incremental update(s) or
an entire state update from the primary.
Consequences: The alternative approach, performing en-
tire state updates, is more suitable for cases where the state
does not grow in size or vary at fine granularity with time.
Our approach in the FTRTES was to use incremental state
update because the subscription state may vary with time.

3.3. Allow reliability/timeliness trade-offs

Context: For semi-active replication, one approach is to
use a reliable multi-cast protocol to synchronize the state
between primary and replicas. However, using such a pro-
tocol may constrain the range of reliability and timeliness
trade-offs that can be achieved. A potentially more flexible
alternative is to perform replication using the middleware
itself, e.g., via CORBA method invocations.

The CORBA standard specifies 3 kinds of method in-
vocations : one-way, two-way, and asynchronous method
invocation (AMI). In two-way method invocations, clients
block until servers finish execution and return results back
to the clients. In one-way method invocations, clients do
not block but do not receive any indication of the method’s
success or failure from the server. AMI, on the other hand,

allows clients to proceed without blocking but provides the
capability to return results (e.g., via a callback object).
Problem: In semi-active replication, the primary needs to
replicate state to all other members of the object group.
CORBA method invocations offer a natural way to provide
reliable and efficient replication of state for the FTRTES,
but naive approaches risk undue inefficiency, unreliability,
and/or complexity.
Solution: To improve timeliness for fault-free operations
as well as for fault recovery stages, our FTRTES solution
supports two approaches for sending replication messages.
Both approaches use the concept of a transaction depth, n.
A subscription method invocation is blocked until the first
n replicas have processed the replication message, called
assured-replication. Other replicas can also process the
state change asynchronously via soft-replication, which is
not assured to complete before the request invocation re-
turns to the client – if a crash of a group member occurs,
only the assured depth of replication is guaranteed.

The first approach uses two-way method invocations for
assured-replication operations and one-way method invoca-
tions for soft-replication operations. When a member of
the object group receives a subscription request message, it
retrieves the transaction depth from the service context in
the message. If the transaction depth is greater than 1, the
primary will use a two-way method invocation to replicate
the request to its successor; otherwise, it will use a one-
way method invocation. In the former case, each member
will pass along a transaction depth that is one less than it
received.

The second approach is to use AMI for both assured and
soft replication messages. In this case, the primary sends
replication messages using AMI to all other members in the
object group once it receives a subscription request. The
primary waits for replies from the first n (equal to the trans-
action depth specified by the client) replicas before it sends
a reply back to the client.
Consequences: The AMI replication strategy allows paral-
lel replication operations in different replicas without sacri-
ficing reliability. However, using AMI introduces some ad-
ditional programming complexity to handle results that are
returned asynchronously. Here as well the use of a replica-
tion sequence number can allow recovery from an inconsis-
tent soft-replicated state, but at a cost of a longer recovery
time. FTRTES clients are allowed to specify the transaction
depth using the service context mechanism in CORBA to
trade off reliability and timeliness. If the transaction depth
can not be met, the replicate operation has to be rolled back
and the primary then throws an exception back to the client.

Despite these advantages for using AMI in our FTRTES
implementation, a more intuitive way to implement repli-
cation is to use two-way CORBA calls to transmit the state
change from the primary to all backups. However, using
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this approach, the client waiting time will be proportional
to the number of assured replicas. For middleware services
in which real-time constraints operate at longer time scales,
or in which some flexibility in timeliness is acceptable, us-
ing two-way calls (particularly if combined with our trans-
action depth approach) may be a preferable alternative for
combining real-time and fault-tolerance properties.

3.4. Collocate replication managers

Context: In FT-CORBA, ReplicationManagers are respon-
sible for the management of the object group, and must be
replicated to avoid becoming a single point of failure.
Problem: If the ReplicationManager object group is man-
aged separately from the FTRTEC object group, two inter-
dependent levels of replication must be managed at once.
This adds complexity and risks configuration errors such as
introducing recursive replication dependencies.
Solution: To avoid managing ReplicationManagers sepa-
rately, we collocate them with the replicated FTRTEC ob-
jects. The primary of the ReplicationManager object group
is also the primary of the FTRTEC object group. With semi-
active replication, if the successor of the primary detects the
failure of the primary, it becomes the primary for both the
event service and the ReplicationManager groups, and reg-
isters a new IOGR with the naming service.
Consequences: Collocating ReplicationManager and
FTRTEC objects solves the problems of having a single
point of failure, and of complex and error-prone manage-
ment of separate replication groups. However, both replica-
tion groups will lose a member in a single endsystem crash.
In systems where greater independence of the replication
groups is desirable or is already inherent, managing sepa-
rate replication groups may be justified.

3.5. Distinguish operations by priority

Context: In our FTRTES solution, event push operations
are short-lived, and require predictable low latency and high
throughput. In contrast, subscription requests need to be
replicated and thus take longer to transmit and to process.
To maintain consistency, group management operations in
the ReplicationManager also involve extensive communica-
tion between the primary and replicas and have non-trivial
latency. Both subscription and group management opera-
tions are I/O bound, and their latency comes largely from
waiting for the responses from other hosts.
Problem: Subscription and group management operations
may impede transmission and processing of event push op-
erations, which require low and predictable latency.
Solution: We give event push operations higher priority
than the subscription and group management operations. In
addition, we apply the endpoint-per-priority model [23] in

our TAO FTRTES implementation, in which the server-side
ORB uses multiple transport endpoints to accept connec-
tions from clients. Each transport endpoint is given a prior-
ity that is also the priority of the threads servicing the end-
point as well as of all the connections it accepts. When a
server ORB creates an IOR for one of its objects, it embeds
all of the server’s acceptor [24] endpoints along with their
priorities into the object’s IOR. Then, a client ORB selects
the priority that best matches the client’s need (as speci-
fied by the Client Priority Policy) from those offered by the
server, and uses the corresponding transport endpoint spec-
ified by the server to obtain the desired priority level.

We then extend the FT-CORBA IOGR to incorporate the
endpoint-per-priority model. Each IOGR contains several
profiles which represent the primary and replicas. Each
profile contains endpoints with specific priorities. When a
client fails to communicate with the server using an end-
point in the active profile, the client ORB switches to using
the endpoint given in the next profile.
Consequences: The endpoint-per-priority model reduces
delays to the push operation because push operations have
a dedicated thread that that runs at a higher priority than the
thread(s) in which subscription operations run. Only two
threads are strictly necessary to handle clients requests: one
for push operations and one for the others.

An alternative solution is to use a thread pool and the
leader follower pattern [24] which allows a bounded num-
ber of threads to handle requests simultaneously. However,
the number of executing operations is bounded by the num-
ber of threads. If subscription operations have occupied all
the available threads, no thread will be able to process event
push operations until a subscription operation completes.
Also, although increasing the number of threads will de-
crease the possibility that an event push operation can be
stalled, that can increase system overhead due to extra con-
text switching.

3.6. Piggyback IOGR update onto reply

Context: When membership in an object group changes,
clients’ IOGRs must be updated. FT-CORBA defines a
GROUP VERSION service context that a client can send
to the server, which includes a version number that allows
the server to check whether the IOGR used by the client is
up to date. If the IOGR is obsolete, the server then sends a
LOCATE FORWARD PERM exception to the client ORB
with the new IOGR. After the client ORB updates its IOGR,
it re-sends the request with the new service context.
Problem: If the membership of the object group and the
primary have both changed, it is necessary to redirect the
client request to the new primary so it can execute the re-
quest and send the reply. However, if the primary does not
change, it is wasteful for the client to re-send the request
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with the GROUP VERSION.
Solution: We use a service context piggybacked on a re-
ply message to update the IOGR whenever applicable. In
our FTRTES implementation, when a primary receives a
request with an obsolete GROUP VERSION, it still pro-
cesses the request and sends a reply. However, the reply
contains another service context with the latest IOGR. This
allows the client to update the IOGR without extra delay.
If a non-primary replica receives a request, it still sends a
LOCATE FORWARD PERM exception back to the client.
Consequences: Without piggybacking IOGR updates onto
replies, the request has to take one extra round trip even if
the primary of the object group remains the same after the
IOGR has been updated. It is thus advantageous to piggy-
back IOGR updates whenever possible.

3.7. Flatten interfaces into a façade

Context: The COS Event Service specification includes
separate ConsumerAdmin, SupplierAdmin, ProxyPush-
Consumer, and ProxyPushSupplier interfaces.
Problem: Multiple event service interfaces create ex-
tra complexity and overhead for IOGR management on
the client, and are unnecessary because each replicated
FTRTES object is contained within one host. To the client,
each interface is represented by a different IOGR. For ex-
ample, if a client publishes two kinds of events and estab-
lishes two different logical connections with an event ser-
vice, it gets two distinct IOGRs (a and b) to ProxyPushCon-
sumers. If the primary crashes the client ORB detects the
failure because it fails to establish a transport connection
with the primary profile in IOGR a. The client ORB can
redirect the request to the host in the next profile stored in
IOGR a and update the IOGR when it gets the reply. How-
ever, when the client needs to push an event through IOGR
b, the client ORB has to repeat the same procedure, which
results in unnecessary delay.
Solution: Our FTRTES implementation uses the Façade
pattern [6] to solve this problem. We create a single in-
terface that combines all operations from the various inter-
faces of the event service. For operations that return object
references in the COS Event Service model, opaque object
handles are returned instead. All invocations on the original
object are replaced by invocations on the façade interface,
with an object handle as a parameter. Therefore, the change
of membership in an object group only needs to update one
IOGR instead of many on each client.
Consequences: The separation of interfaces in the COS
Event Service specification gives developers freedom to
deploy different event service modules on different hosts.
However, due to the constraints on timeliness for our
FTRTES solution, collocating the objects implementing
those interfaces within a single FTRTEC object is neces-

sary, and so little flexibility is lost when those interfaces are
combined into a single façade. Applications requiring flex-
ible deployment of the objects that make up a fault-tolerant
CORBA service will necessarily incur higher complexity in
maintaining multiple related object references during IOGR
updates.

3.8. Provide a client-side adapter

Context: Although applying the Façade pattern can avoid
updating multiple IOGRs when object group membership
changes, modifying the interface between the event service
and the client may then require non-trivial source code mod-
ifications in the clients that use the FTRTES.
Problem: The façade interface breaks backward compati-
bility with legacy applications using the FTRTES.
Solution: We use the Adapter pattern [6] to address the in-
terface incompatibility problem introduced by the Façade
pattern. For applications that require backward compatibil-
ity, we provide an object for adapting calls to the original
TAO RTES interfaces into the new FTRTES interface given
by the Façade pattern. The adapter can be linked directly
into the client application with only minor source code mod-
ifications and with high run-time efficiency.
Consequences: To take advantage of the features pro-
vided by FT-CORBA, all the requests sent by clients should
contain the service contexts defined in the specification.
For client applications written for an ORB that is not FT-
CORBA compliant, the adapter can be compiled into a bi-
nary executable and deployed in the same host with client.
Client applications would then interact with the adapter in-
stead of the event service directly, and the adapter can then
convert the request into FT-CORBA compliant messages.
This allows client applications to make immediate use of
FT-CORBA features without source code modifications.

Using an adapter also allows us to combine sev-
eral stages of subscription operations into one. For ex-
ample, in the RTES, the supplier subscription requires
3 CORBA method invocations : for suppliers(), ob-
tain proxy consumer() and connect proxy supplier(). Our
new interface for the FTRTES provides one operation, con-
nect proxy supplier(), which combines the functionality of
the other 3 operations and thus reduces the latency for sub-
scription operations.

4. Empirical Evaluation

This section compares the performance of our Fault-
Tolerant Real-Time Event Service (FTRTES) described in
Section 3 with that of TAO’s Real-Time Event Service
(RTES) described in Section 2. We also examine the ef-
fect of node failures on the throughput of event push and
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subscription operations. We conducted our experiments us-
ing 2 Pentium-IV 2.5 GHz machines and 2 Pentium-IV
2.8 GHz machines, each with 512MB RAM and 512KB
cache and running KURT-Linux 2.4.18, connected by a 100
Base-T Ethernet isolated network. Our experiments used
ACE/TAO version 5.4.5 / 1.4.5, and ran as root in the real-
time scheduling class.

Our experiments assumed a single-failure fail-stop fault
model with no nested failures. The methodology we
adopted for each experiment, and our experimental results
and analysis, are presented in the following subsections.

4.1. RT event latency with/without FT

We first describe benchmarks we conducted to com-
pare end to end event latency in our FTRTES implemen-
tation and in the TAO RTES on which our implementation
is based. The goal of these experiments was to quantify
the additional overhead of the fault-tolerance features we
added. Both event consumers and suppliers were located
in one 2.8 GHz machine and the FTRTES or RTES was lo-
cated on the other 2.8 GHz machine. We configured the
FTRTES with between 0 and 3 backup replicas in addition
to the primary. The measured latencies of event push oper-
ations are summarized in Figure 3. The standard deviations
for all these cases were between 10.88 μsec and 13.12 μsec.
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Figure 3. FTRTES/RTES Latency Comparison

From Figure 3, we can see that the average latency was
about 80 μsec higher, and the maximum latency was about
140 μsec higher (with 3 backup replicas), with the FTRTES
than with the RTES. This additional latency stemmed from
the extra service contexts attached to every message, which
all FTRTES clients were required to inject and which the
FTRTES was required to interpret. These service con-
texts included the FT GROUP VERSION discussed in Sec-
tion 3 and the FT REQUEST service context defined in

FT-CORBA, which contained three fields: client id, reten-
tion id and expiration time. These fields had two purposes
in our experiments: the server used the client id and reten-
tion id to detect duplicate requests in order to ensure at-
most-one request delivery semantics, and used the expira-
tion time field to evaluate the liveness of a request.

4.2 Effects of transaction depth

In this experiment, we configured the system with a pri-
mary on a 2.8 GHz machine, one replica and the event con-
sumer and supplier on a 2.5 GHz machine, a second replica
on the other 2.8 GHz machine, and a third replica on the
other 2.5 GHz machine. We varied the transaction depth
from one to four for both two-way/one-way and AMI repli-
cation, and measured the latency of subscription operations.
The results are shown in Figure 4.
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Figure 4. Subscription Time Scalability

As may be expected, for two-way/one-way call replica-
tion, the subscription latency grew linearly with the trans-
action depth, as the replication operation was serialized
among the replicas. Soft replication then traded off relia-
bility for response time by allowing replication to continue
to other replicas without waiting for previous ones to finish.

With AMI replication, the subscription latency remained
essentially constant as replicas after the first one were
added, because the replicas perform the replication opera-
tions in parallel without waiting for the other replicas. Only
the primary waits, until as many of the replicas finish as are
specified by the transaction depth.

4.3 Event latency during fail-over

The experiments in this subsection examined the event
push latency under fail-over conditions. Our experimental
setup was the same as in Section 4.2 and the supplier sent
events at a 10 Hz frequency. We measured the latency of
each event passing from the point it was sent by the event
supplier until it reached the event consumer.
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Figure 5. Cumulative Fail-Over Distribution

There are several factors that can affect performance dur-
ing fail-over. The first factor to consider is the interfer-
ence of group management operations with event push op-
erations as was discussed in Section 3. When the primary
crashes, the backup will start to re-organize the object group
to maintain group integrity which can delay event dispatch-
ing in the new primary if the event dispatching operation
is not prioritized. We crashed the primary 50 msec after
a certain number of events was handled and compared the
cases where the server ORB used one versus two threads at
the same priority to handle requests, as well as when event
push operations are given higher priority than other opera-
tions. Figure 5 shows our results. All events were delivered
between 1600 μsec and 1800 μsec when push operations
were prioritized. In contrast, more than 50% (or 30%) of
the events were delivered after 1.94 seconds when the server
ORB used one thread or two threads at the same priority to
handle requests. Thus, prioritization with at least 2 threads
greatly improved the predictability of event delivery.

The second factor to consider is the timing of the fault.
If the primary crashes after it receives an event but before
it replies to the event suppliers, the supplier has to wait un-
til it detects the failure of the transport connection and re-
route the event to the new primary. If the primary crashes
when it is not dispatching events, the supplier can save the
time needed to re-route the event. Figure 6 shows the ef-
fect of timing of the primary’s failure. The first column in
Figure 6 summarizes the event latencies over 1000 samples
during fail-over when the primary crashes in the middle of
an event push. The average value in this case was 5242
μsec and the maximum value was 5408 μsec. The second
column summarizes the latencies when the primary crashed
between event push operations, which had an average value
of 1642 μsec and a maximum value of 1707 μsec.

The third factor that affects event push performance
under fail-over conditions is dynamic memory allocation
along the event dispatching path. General purpose heap
memory allocators can usually optimize memory alloca-
tion requests that show repeated patterns; therefore, the first
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Figure 6. Event Latency and Failure Timing

memory allocation iteration of the pattern will take signifi-
cantly more time than the rest. Under a fail-over situation,
the first event that arrives at the newly elected primary may
exhibit a longer processing time due to the memory alloca-
tion inside the ORB and its Portable Object Adapter, e.g.,
for decoding or encoding GIOP messages.

The fourth factor that can affect event push operation
performance is the time for transport connection establish-
ment. During an event push, the supplier Client ORB will
check the availability of the connection to the primary. If
the connection has been disconnected, the client ORB will
try to re-connect to the primary and wait until it times out.
After that, the client will connect to the first replica in the
IOGR list and send the event if the connection can be estab-
lished. In this case, the event could be delayed by waiting
for a connection establishment time-out and a connection
establishment time.

We examined the effect of each of these factors on fail-
over event latency by mitigating each one in turn. To re-
move memory allocation variance, an initialization event
was sent to every member of the FTRTES object group at
start up time. Similarly, we also modified the TAO ORB
configuration to avoid reconnecting when the supplier de-
tects the connection to the primary has failed.

With each of these factors having its worst impact, the
average event latency was 616 msec, with a maximum of
1956 msec. With prioritization of event push operations,
the average event latency dropped to 5242 μsec with a max-
imum value of 5408 μsec. When we also only triggered
primary crashes between events, the average event latency
was reduced to 1642 μsec with a maximum value of 1707
μsec. When we also performed initial memory allocation
prior to the first event push, the average event latency was
1311 μsec with a maximum value of 1405 μsec. Finally,
when we also avoided unnecessary re-connections the av-
erage event latency dropped to 806 μsec with a maximum
value of 927 μsec.
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These results show that the mitigation steps described
in this section are essential to optimizing FTRTES perfor-
mance. By applying them in our FTRTES implementation,
we were able to bring the fail-over event latency when faults
did not occur during an event push close to the event latency
with no failures seen in Figure 3 in Section 4.1.

5. Related Work

RT-CORBA [21] provides support for application con-
trol of system resources and for end-to-end real-time QoS
via prioritized object method invocations.

TAO’s Real-Time Event Service [10] provides anony-
mous message delivery and allows applications to specify
QoS requirements explicitly, so events can be scheduled
and delivered to their destinations with rigorous QoS as-
surances. The Real-Time Notification Service [9] extends
the Real-Time Event Service with structured events.

Electra [15, 14] and Orbix+Isis [2, 14] are based on spe-
cialized group communication toolkits (Horus and Isis re-
spectively) to provide support for fault-tolerance by repli-
cating CORBA objects. Both Electra and Orbix+Isis re-
quire modifications to the ORB in order to deliver CORBA
messages using the group communication toolkits. The ad-
vantage of this approach is the ease of application develop-
ment; however, this may result in proprietary systems with
limited replication strategies. For example, both Electra and
Orbix+Isis only support active replication.

The Eternal System [18, 17] applies the Interceptor pat-
tern [24] to support fault-tolerance. It intercepts system
calls made by CORBA clients to low-level OS I/O subsys-
tems, and transforms point-to-point communication into the
Totem [16] group communication protocol for replicating
CORBA objects. This approach does not require modifica-
tion of the ORB implementation.

AQuA [3] does not require ORB modification either. It
uses a gateway for accepting calls from clients and trans-
lating the request messages into the group communication
primitives of Ensemble/Maestro [11, 26] which allows it to
replicate objects, and detect and filter duplicate messages.

The Object Group Service (OGS) [5] provides CORBA
services to support fault-tolerance, including a group ser-
vice, a consensus service, a monitoring service and a mes-
saging service. This approach exposes the replication of ob-
jects to the application program, reducing transparency but
allowing programmers to customize the services for their
needs.

DOORS [19] also takes a service-based approach to
fault-tolerance. Instead of using a particular group commu-
nication toolkit, it allows application developers to select
suitable transport protocols via TAO’s pluggable protocols
framework. Gokhale, et al., also applied semi-active repli-
cation to TAO to support both real-time and fault-tolerance

requirements [8]. Our work customizes this approach fur-
ther according to the specific requirements of the FTRTES
application domain, through the refinements described in
Sections 3.1 through 3.8.

6. Concluding Remarks

The Fault-Tolerant Real-Time Event Service (FTRTES)
presented in this paper provides an event based communica-
tion model that meets both reliability and real-time require-
ments. Our FTRTES implementation is distributed with
TAO as open-source software that is freely available for
download from http://deuce.doc.wustl.edu/Download.html
Lessons learned: Our experiences designing and evaluat-
ing the new techniques discussed in Section 3 revealed sev-
eral valuable lessons about building fault-tolerant and real-
time applications and middleware. First, the exposure of
multiple interfaces to clients can lead to longer IOGR up-
date times and proliferation of transport connection times
during fail-over. It may be better in some cases to use the
Façade pattern to encapsulate the functionality of the entire
service, as we did for the FTRTES. If backward compati-
bility is an issue for legacy applications, the adapter pattern
can be introduced. Second, although for two-way/one-way
replication setting a transaction depth is an effective way of
trading off consistency and performance, AMI replication
offers better state replication performance overall at a cost
of some additional programming complexity. Third, prior-
itizing operations using an endpoint-per-priority model can
greatly reduce the duration and variability of time-sensitive
operations, even during fail-over. Finally, allowing domain-
specific trade-offs in (1) strategies for state update, (2) col-
location of replicated objects, and (3) use of other messages
to piggyback updates, may also prove beneficial albeit at a
cost of additional design and implementation complexity.
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