1. The Ford-Fulkerson Algorithm runs in $O(C|E|)$ time where $C = \sum e \text{ out of } s \ c(e)$
 (a) Since the capacities remain integers, the amount of flow leaving s (the value of the flow)
 increases by at least 1 on each iteration.
 (b) The algorithm therefore must terminate within C iterations
 (c) Since depth-first search can find the paths in time $O(|E|)$ (if we have no isolated vertices)
 and computing the bottleneck and augment operations also can be done in time $O(|E|)$,
 the algorithm runs in $O(C|E|)$ time.

2. We will show correctness of Ford-Fulkerson using a structural bound involving “cuts” in G
 (a) A s-t cut is a partition of V into A and B such that $s \in A$ and $t \in B$
 (b) The capacity of the cut (A, B) is the total capacity of edges crossing from A to B
 (c) For any s-t cut (A, B), the value of a flow f (from s to t) is equal to the amount of flow
 leaving A minus the amount of flow returning to A. Therefore, the value of any flow is
 at most the capacity of any cut.

3. Ford Fulkerson returns a flow with value equal to the capacity of a cut, and is therefore of
 maximum possible value (thus also “Max-Flow = Min-Cut”)
 (a) F-F terminates when there is no s-t path using edges with positive residual capacity
 (b) If we look at the set of vertices reachable from s using only edges of positive residual
 capacity A^* when F-F terminates, the edges leaving A^* must be saturated and there
 must not be any flow returning to A^*.
 (c) Therefore, the value of the flow is equal to the capacity of the corresponding cut.
 (d) Moreover, we can therefore find a minimum cut by finding this set A^* using reachability
 in the residual graph – also in total time $O(C|E|)$ where C is the total capacity of edges
 leaving s.

4. We will solve the Maximum Bipartite Matching problem by reducing it to (Integer) Maximum
 Flow, which is solved by F-F.
 (a) A bipartite graph is one that has a vertex set consisting of two disjoint sets L and R
 such that all edges cross between L and R. A matching is a set of edges that do not
 share any endpoints.
 (b) Maximum Bipartite Matching: Given a bipartite graph, find a matching of maximum
 size.