1. Recall: Knapsack problem

 (a) Given a set of items with an associated weight and value, and a maximum weight \(W \), choose a subset with total weight at most \(W \) of maximum value.

 (b) Key idea: use subproblems indexed by both the set of items remaining (first \(j \)) and the remaining capacity of the knapsack \(i \).

 (c) Analysis by cases: either we can’t take the \(j \)th item, we don’t need to take the \(j \)th item, or we have to take the \(j \)th item.

 i. In this last case, an optimal solution on the first \(j \) gives an optimal solution on the first \(j - 1 \) with capacity reduced by the weight of the \(j \)th item.

 ii. Otherwise, we can just use the solution on the first \(j - 1 \) items with the same capacity.

 (d) We can reconstruct the set from the values by checking whether or not we need to take the \(j \)th item to remain optimal, and including it only if so.

 (e) This algorithm is \textit{pseudopolynomial time} because it runs in time polynomial in the value of the weight bound, not in the size of its representation (which is the number of digits).

2. Problem: sequence alignment

 (a) Given costs for insertions, deletions, and substitutions, compute the minimum cost transformation of an input string \(X \) into another input string \(Y \).

 (b) Key lemma: the last character is transformed by either a substitution (including possibly leaving the character alone), an insertion, or a deletion. Any one of these results in a problem of transforming a pair of strings of strictly shorter total length (prefixes of the original strings).

 (c) Thus, the subproblems are the minimum cost transformations of the first \(i \) characters of \(X \) into the first \(j \) characters of \(Y \). Using the lemma, this leads to a straightforward dynamic programming algorithm.