1. Problem: interval scheduling (scheduling access to a resource that cannot be shared)
 (a) A first example of an optimization problem
 (b) Given as input a set of time intervals \(\{[s_i, f_i] : i = 1, \ldots, n\} \)
 (c) Candidate solutions: subsets of intervals
 (d) Constraints: intervals may not overlap (“conflict”)
 (e) Feasible solutions: a subset of intervals that do not overlap with one another
 (f) Objective: maximize the size of the subset (with no conflicts)
 (g) An algorithm for interval scheduling is considered to be correct if it returns conflict-free subsets of maximum size

2. Algorithm style: “Greedy”
 (a) Roughly: build up a solution via local, myopic choices that maximize some simpler (easy-to-optimize) objective
 (b) Possible greedy algorithms for interval scheduling: earliest start, earliest finish, fewest conflicts, etc.
 (c) Most of these are not correct, i.e., do not obtain maximum size subsets.

3. “Stays-ahead” analysis of earliest finish
 (a) Earliest-finish is a correct greedy algorithm, which can be made to run in time \(O(n \log n) \).
 (b) Prove by induction that for every other possible feasible solution \(O \), the \(r \)th interval (in order of increasing finish time) in \(O \) finishes at or after the finish time of the solution \(A \) returned by earliest-finish.
 (c) Therefore, if \(O \) has an \(r + 1 \)th interval, the earliest-finish algorithm can add another interval.

4. Problem: weighted interval scheduling
 (a) Intervals now have a value attached, and the objective is to maximize the total value of the chosen subset.
 (b) Earliest-finish is not correct for weighted interval scheduling, and I don’t know of any correct greedy algorithm for this problem.
 (c) A more powerful style of algorithm will work: “dynamic programming” – roughly:
 i. write down an obviously correct but inefficient recursive algorithm
 ii. Record/“memoize” the solutions to subproblems to obtain a polynomial running time.