Reminder: You may work in groups and use outside sources. But, you must write up solutions in your own words and properly reference your sources for each problem. This includes listing your collaborators and properly citing any sources you use. Solutions to each problem must be electronically typeset and submitted online via Gradescope. Instructions appear in the E-Homework Guide: http://www.cse.wustl.edu/~bjuba/cse347/s19/ehomework/

1. *Kleinberg & Tardos* Chapter 5, question 7

2. Consider the problem of word-wrapping a paragraph of text. A paragraph is an ordered list of n words, where word w_i is ℓ_i letters long. You want to divide the paragraph into a sequence of lines, each containing at most L letters. (No word is more than L letters long.)

Suppose a line contains words $w_i \ldots w_j$. The total length $W(i,j)$ of this line is defined by

$$W(i,j) = j - i + \sum_{k=i}^{j} \ell_k.$$

This length accounts for a single space between successive pair of words on the line. The *slop* $S(i,j)$ of this line is defined to be $L - W(i,j)$, the total number of unused spaces at the end of the line. Note that in any feasible solution, the slop of each line must be non-negative.

Just to make things concrete, consider the example paragraph “Now is the time for all good men.”, and suppose $L = 10$. One feasible solution is

```
Now is the
time for
all good
men.
```

This solution has four lines of lengths 10, 8, 8, and 4; the corresponding slops are 0, 2, 2, and 6.

Your goal is to find a division of the input paragraph into lines that minimizes the sum, over all lines except the last, of the *squared* slop of each line. (We omit the last line because it can in general be much shorter than the others.) For example, the total cost of the above solution is $0^2 + 2^2 + 2^2 = 8$.

Give a polynomial-time algorithm for this problem.

3. You are given a set of n jobs, each of which runs in unit time. Job i has an integer-valued deadline time $d_i \geq 0$ and a real-valued penalty $p_i \geq 0$. Jobs may be scheduled to start at any non-negative integer time (0,1,2, etc), and only one job may run at a time. If job i completes at or before time d_i, then it incurs no penalty; otherwise, it incurs penalty p_i. Give a polynomial-time algorithm to schedule all jobs so as to minimize the total penalty incurred.