Recitation will be this Friday (9/21) in Jolley 309.
 - Will go over topics relevant to Pset.
Problem Set due next Tuesday
Notes on Parallelization

Say your simple code looked like this

```python
for i in Indices:
    y = func1(x[i])
    z = func2(x[ifunc(i)])
    p = func3(y, z)
    out[i] = func4(p)
```

Replace as

```python
y = func1(x[Indices])
z = func2(y[ifunc(Indices)])
p = func3(y, z)
out[Indices] = func4(p)
```

- Most numpy functions that act on single numbers can be used elementwise on arrays.
- Think about all the steps you would do for each number in a loop: Can these steps can be carried out independently for different loop indices?
- If so, replace them with array operations.
\[\hat{X} = \arg \min_X \|X - Y\|^2 + (X - \mu)^T \Sigma^{-1} (X - \mu) \]

where, \(\mu = W^T \mu_c, \Sigma = W^T D_c W. \)

The solution is:

\[\hat{X} = W^T (I + D_c^{-1})^{-1} W \ (Y + W^T D_c^{-1} \mu_c) \]

How would you code this up?
\[\hat{X} = W^T (I + D_c^{-1})^{-1} W (Y + W^T D_c^{-1} \mu_c) \]

\[= W^T (I + D_c^{-1})^{-1} (WY + D_c^{-1} \mu_c) \]

```python
xc = wvlt(Y)
xv += mu_c / sigma2c
xc /= (1 + 1/sigma2c)
X = invwvlt(xc)
```

Note that here mu_c and sigma2c are arrays the same size as xc.
More general optimization setting:
\[
\hat{X} = \arg \min_X D(X; Y) + R(X)
\]
\[
\hat{X} = \arg \min_X \sum_n \|X[n] - Y[n]\|^2 + \lambda \sum_n \left(((G_x * X)[n])^2 + ((G_y * X)[n])^2 \right)
\]

Let A_x and A_y be matrices corresponding to convolution with G_x and G_y.
\[
\hat{X} = \arg \min_X \|X - Y\|^2 + \lambda \left(\|A_x X\|^2 + \|A_y X\|^2 \right)
\]
\[
= \arg \min_X (X - Y)^T (X - Y) + \lambda X^T (A_x^T A_x + A_y^T A_y) X
\]

Let's change this to our standard quadratic form:
\[
= \arg \min_X X^T \left(I + \lambda (A_x^T A_x + A_y^T A_y) \right) X - 2X^T Y + Y^T Y
\]
And so,
\[
\hat{X} = \left(I + \lambda (A_x^T A_x + A_y^T A_y) \right)^{-1} Y
\]

How do you do this matrix inverse?
\[\hat{X} = (I + \lambda(A_x^T A_x + A_y^T A_y))^{-1} Y \]

Remember, (circular) convolution is diagonalized in the Fourier domain!

\[A_x = S \, D_x \, S^* \]

- Multiplication by \(S \) is the inverse Fourier transform
- Multiplication by \(S^* \) is the forward Fourier transform
- \(SS^* = I \)
- \(D_x \) is a diagonal matrix with the Fourier transform coefficients of \(G_x \)

\[A_x^T A_x = A_x^* A_x = S \, D_x^* D_x S^* = S \, \|D_x\|^2 S^* \]

\[A_y^T A_y = S \, \|D_y\|^2 S^* \]

\[I + \lambda(A_x^T A_x + A_y^T A_y) = I + \lambda S(\|D_x\|^2 + \|D_y\|^2)S^* \]

\[= S \left(I + \lambda \left(\|D_x\|^2 + \|D_y\|^2 \right) \right) S^* \]
What is this doing?

It’s down-weighting frequency components by a (real) factor where $\|D_x\|^2$ and $\|D_y\|^2$ are high.

Those are high for higher frequencies, because G_x and G_y are derivative filters.

So this operation down-weights higher frequency components ⇒ Smooths the image.
IMAGE RESTORATION

Denoising

\[
\hat{X} = \arg \min_X \sum_n \|X[n] - Y[n]\|^2 + \lambda \sum_n \left((G_x * X)[n]^2 + (G_y * X)[n]^2 \right)
\]

De-blurring

Say we know that our image has been blurred by a known blur kernel \(k \)

\[
Y[n] = (X \ast k)[n] + \epsilon[n]
\]

\[
\hat{X} = \arg \min_X \sum_n \|(X \ast k)[n] - Y[n]\|^2 + \lambda \sum_n \left((G_x * X)[n]^2 + (G_y * X)[n]^2 \right)
\]

\[
\hat{X} = \arg \min_X \|A_k X - Y\|^2 + \lambda \left(\|A_x X\|^2 + \|A_y X\|^2 \right)
\]

where \(A_k \) represents the action of convolution by blur kernel \(k \).

\[
\hat{X} = (A_k^T A_k + \lambda (A_x^T A_x + A_y^T A_y))^{-1} A_k^T Y
\]

Note that there is now \(A_k^T Y \) instead of just \(Y \).
De-blurring / De-convolution

\[
\hat{X} = \arg \min_X \|A_k X - Y\|^2 + \lambda \left(\|A_x X\|^2 + \|A_y X\|^2 \right)
\]

\[
= \left(A_k^T A_k + \lambda (A_x^T A_x + A_y^T A_y) \right)^{-1} A_k^T Y
\]

We can do this in the Fourier domain again (assuming \(A_k\) represents circular convolution).

\[
\hat{X} = S \left(\|D_k\|^2 + \lambda \left(\|D_x\|^2 + \|D_y\|^2 \right) \right)^{-1} S^* A_k^T Y
\]

\[
\hat{X} = S \left(\|D_k\|^2 + \lambda \left(\|D_x\|^2 + \|D_y\|^2 \right) \right)^{-1} S^* (SD_k^*S^*)Y
\]

\[
\hat{X} = S \left(\|D_k\|^2 + \lambda \left(\|D_x\|^2 + \|D_y\|^2 \right) \right)^{-1} D_k^* S^* Y
\]

\[
X_f[u, v] = \frac{K_f[u, v]^*}{\|K_f[u, v]\|^2 + \lambda \left(\|G_{xf}[u, v]\|^2 + \|G_{yf}[u, v]\|^2 \right)} Y_f[u, v]
\]

If \(\lambda = 0\), this reduces to:

\[
X_f[u, v] = \frac{K_f[u, v]^*}{\|K_f[u, v]\|^2} Y_f[u, v] = \frac{Y_f[u, v]}{K_f[u, v]}, \quad \text{as } \|K_f\|^2 = K_f K_f^*
\]
De-blurring / De-convolution

\[
\hat{X} = \arg \min_{X} \|A_k X - Y\|^2 + \lambda \left(\|A_x X\|^2 + \|A_y X\|^2 \right) \\
= \left(A_k^T A_k + \lambda (A_k^T A_x + A_k^T A_y) \right)^{-1} A_k^T Y
\]

\[
X_f[u, v] = \frac{K_f[u, v]^*}{\|K_f[u, v]\|^2 + \lambda \left(\|G_{xf}[u, v]\|^2 + \|G_{yf}[u, v]\|^2 \right)} Y_f[u, v]
\]

If \(\lambda = 0 \), this reduces to:

\[
X_f[u, v] = \frac{K_f[u, v]^*}{\|K_f[u, v]\|^2} Y_f[u, v] = \frac{Y_f[u, v]}{K_f[u, v]}, \text{ as } \|K_f\|^2 = K_f K_f^*
\]

But \(K_f[u, v] \) may be zero or close to zero, in which case dividing will amplify noise.

So the Fourier transform of the kernel \(k \) is telling us which frequency components are severely attenuated by the kernel.

The "regularization" with \(\lambda > 0 \) helps stabilize the inversion, because if \(K_f[u, v] \) is low for some \((u, v)\), then the factor will downscale the input coefficient \(Y[u, v] \).

This is called Wiener filtering or Wiener Deconvolution.
If you're going to use this method to do de-convolution, you will have to account for the fact that your observed image was a "valid" convolution, and not a 'circular' convolution.

A good approximation is to do what's called "edge tapering". First pad the image Y to a bigger image, where you make values go down smoothly to 0.

Then do the deconvolution, and crop out the central part.
We discussed cases when you know of a basis (wavelet / Fourier) where you can diagonalize your quadratic system matrix, and have a closed form expression for its inverse.

Not always the case. What if you wanted to exactly model valid convolution (not approximate it as circular) ? What if you observed values at a subset of pixels ?

Generally, what if you wanted to compute $X = Q^{-1}Y$ for some arbitrary symmetric positive-definite Q.
Let's consider a case where you can form Q.

- Never compute Q^{-1}, and then multiply by Y.
 - Numerically unstable, more expensive.
- Call `scipy.linalg.solve`:
 - Cholesky / LDL Decomposition: $Q = L D L^T$
 - Always exists for a positive definite matrix. L is lower triangular.
 - Solve $Qx = b \rightarrow LDL^T x = b \rightarrow Ly = b, L^T x = D^{-1}y$

\[
\begin{bmatrix}
a & 0 & 0 & 0 & \cdots \\
q & c & 0 & 0 & \cdots \\
d & e & f & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\vdots \\
\end{bmatrix}
\]
More generally, when $Q = A_1^T A_1 + A_2^T A_2 + \ldots$, where A_1, A_2, \ldots are sparse operations, that involve convolutions and element-wise operations.

- If A_1 is convolution with k, then you can get the effect of multiplying $A_1^T A_1$ with an image Y by
 - Convolving with k first
 - Then, convolving the result with the flipped version of k
- If A_1 is valid convolution, A_1^T will correspond to "full" convolution with flipped version of k.
- If A_2 is convolution with k followed by element-wise multiplication with a mask image, then $A_2^T A_2$ is
 - Convolution with k
 - Multiply by mask
 - Multiply by mask again
 - Convolution with flipped version of k
- So even when we can't form Q, we can carry out the actions QY, as well as $Z^T QY$
 - Compute QY
 - Take element-wise product of the result with Z and sum.
Solve by the Conjugate Gradient method.

- Generic algorithm for solving $Qx = b$ for symmetric positive definite Q.
- Useful when you can multiply by Q but not 'form' it.

Basic Idea

- For a given set of vectors $\{p_1, p_2, \ldots, p_N\}$
 - that are same size as x
 - linearly independent
 - $N = \text{dimensionality of } x$
- We can write any $x = \sum_i \alpha_i p_i$
- If we also choose the vectors to be 'conjugate' such that $p_i^T Q p_j = 0$ for $i \neq j$:

$$Qx = b \rightarrow p_k^T Qx = p_k^T b \rightarrow \alpha_i p_k^T Q p_k = p_k^T b \rightarrow \alpha_i = \frac{p_k^T b}{p_k^T Q p_k}$$
CONJUGATE GRADIENT

Iterative Algorithm

- Begin with some guess x_0 for x (say all zeros)
- $k = 0$, $r_0 \leftarrow b - Qx_0$, $p_0 \leftarrow r_0$
- Repeat
 - $\alpha_k \leftarrow r_k^T r_k / p_k^T Q p_k$
 - $x_{k+1} = x_k + \alpha_k p_k$
 - $r_{k+1} = r_k - \alpha_k Q p_k$
 - $\beta_k = r_{k+1}^T r_{k+1} / r_k^T r_k$
 - $p_{k+1} = r_{k+1} + \beta_k p_k$
 - $k = k + 1$

Think about what you would do when: $Q = (A_k^T A_k + \lambda (A_x^T A_x + A_y^T A_y))$, $b = A_k^T Y$
$r[n] = \int L(\lambda, n)\Pi_r(\lambda)d\lambda$

g[n] = \int L(\lambda, n)\Pi_g(\lambda)d\lambda

b[n] = \int L(\lambda, n)\Pi_b(\lambda)d\lambda
Simple View:
Total / Average Intensity in "Green Part" of the spectrum.
Color

Metamers: Different L that have the same measured RGB values.

Simple View:
Total / Average Intensity in "Green Part" of the spectrum.
For simplicity,
Have discrete wavelengths
Approximate integration as summation

\[r[n] = \int L(\lambda, n) \Pi_r(\lambda) d\lambda \]
\[g[n] = \int L(\lambda, n) \Pi_g(\lambda) d\lambda \]
\[b[n] = \int L(\lambda, n) \Pi_b(\lambda) d\lambda \]

\[L(\lambda, n) \rightarrow L[\lambda, n] \text{ or } L[n] \in \mathbb{R}^B \]
\[
\begin{align*}
 r[n] &= \langle L[n], \Pi_r \rangle \\
 g[n] &= \langle L[n], \Pi_g \rangle \\
 b[n] &= \langle L[n], \Pi_b \rangle \\
\end{align*}
\]

Think of the incident light being a B (\(\gg 3\)) channel image \(L[n]\)

\[
L(\lambda, n) \rightarrow L[\lambda, n] \text{ or } L[n] \in \mathbb{R}^B
\]
There are cameras that actually capture such "hyperspectral" images.
\[X[n] = \Pi^T L[n], \]
\[\Pi = [\Pi_r \quad \Pi_g \quad \Pi_b] \]

(B x 3 Matrix)

Think of the incident light being a B (>> 3) channel image \(L[n] \)

- 3 Dimensional Projection from higher dimensional space
- Invariant to changes in the "null space" of \(\Pi \)