IMAGE RESTORATION

Statistics / Estimation Recap

Setting

- There is a true image (or image-like object) x that we want to estimate
- What we have is some degraded observation y that is based on x
- The degradation might be "stochastic": so we say $p(y|x)$

Simplest Case (single pixel: $x, y \in \mathbb{R}$):

$$y = x + \sigma \epsilon \to p(y|x) = \mathcal{N}(y; \mu = x, \sigma^2)$$

Estimate x from y: "denoising"

IMAGE RESTORATION

Statistics / Estimation Recap

- $p(y|x)$ is our observation model, called the likelihood function
 - Likelihood of observation y given true image x
 - Maximum Likelihood Estimator: $\hat{x} = \arg\max_x p(y|x)$

For $p(y|x) = \mathcal{N}(y; x, \sigma^2)$, what is ML Estimate \hat{x}?

$$p(y|x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y - x)^2}{2\sigma^2}\right)$$

$\hat{x} = y$

That's a little disappointing.
Statistics / Estimation Recap

- What we really want to do is maximize $p(x|y)$, not the likelihood $p(y|x)$
 - $p(y|x)$ is the distribution of observation y given true image x
 - $p(x|y)$ is the distribution of true x given observation y
- Bayes Rule

\[
p(x|y) = \frac{p(y|x)p(x)}{p(y)}
\]

Simple Derivation

\[
p(x, y) = p(x)p(y|x) = p(y)p(x|y) \rightarrow p(x|y) = \frac{p(y|x)p(x)}{p(y)}
\]

\[
p(y) = \int p(y|x')p(x')dx'
\]

Maximum A Posteriori (MAP) Estimation

\[
\hat{x} = \arg \max_x p(x|y)
\]

- The most likely answer under the posterior distribution
- Other Estimators Possible: Try to minimize some "risk" or loss function $L(\hat{x}, x)$
 - Measures how bad an answer \hat{x} is when true value is x
- Minimize Expected Risk Under Posterior

\[
\hat{x} = \arg \min_x \int L(x, x')p(x'|y)dx'
\]

- Let's say $L(x, x') = (x - x')^2$. What is \hat{x}?

\[
\hat{x} = \mathbb{E}_{p(x|y)} x = \int x \ p(x|y)dx
\]
Let's choose a simple prior:

\[p(x) = \mathcal{N}(x; 0.5, 1) \]

More generally, to minimize \(C(x) \), find \(C'(x) = 0 \), check \(C''(x) > 0 \)

What is \(C'(x) \)?

\[C'(x) = \frac{x - y}{\sigma^2} + x - 0.5 \]

•Means the function is convex (quadratic functions with a positive coefficient for \(x^2 \) are convex)
Statistics / Estimation Recap

- Let’s go beyond “single pixel images”: \(Y[n] = X[n] + \epsilon[n] \)
- If noise is independent at each pixel
 \[
p((Y[n]) | (X[n])) = \prod_n p(Y[n] | X[n]) = \prod_n \mathcal{N}(Y[n]; X[n], \sigma^2)
\]
- Similarly, if prior \(p((X[n])) \) is defined to model pixels independently:
 \[
p((X[n])) = \prod_n \mathcal{N}(X[n]; 0.5, 1)
\]
- Product turns into sum after taking log

Note: This is a minimization over multiple variables

But since the different variables don’t interact with each other, we can optimize each pixel separately

\[
\hat{X}[n] = \arg \min_{(X[n])} \sum_n \frac{(Y[n] - X[n])^2}{2\sigma^2} + \frac{(X[n] - 0.5)^2}{2}
\]

Multi-variate Gaussians

- Re-interpret these as multi-variate Gaussians
 For \(X \in \mathbb{R}^d \):
 \[
p(X) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp \left(-\frac{1}{2}(X - \mu)^T \Sigma^{-1} (X - \mu) \right)
\]
 - Here, \(\mu \in \mathbb{R}^d \) is a mean “vector”, same size as \(X \)
 - Co-variance \(\Sigma \) is a symmetric, positive-definite matrix \(d \times d \) matrix
 When the different elements of \(X \) are independent, off-diagonal elements of \(\Sigma \) are 0.
 How do we represent our prior and likelihood as a multi-variate Gaussian?
Multi-variate Gaussians

\[p(Y|X) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2} (Y - \mu)^T \Sigma^{-1} (Y - \mu) \right) \]

- \(\mu = X, \Sigma = \sigma^2 I \)
- \(\det(\Sigma) = (\sigma^2)^d \)
- \(\Sigma^{-1} = \sigma^{-2} I \)

\[
(Y - \mu)^T \Sigma^{-1} (Y - \mu) = (Y - X)^T \frac{1}{\sigma^2} I (Y - X) = \frac{1}{\sigma^2} (Y - X)^T I (Y - X) = \frac{1}{\sigma^2} (Y - X)^T (Y - X) = \frac{1}{\sigma^2} \|Y - X\|^2 = \frac{1}{\sigma^2} \sum_{n} (Y[n] - X[n])^2
\]

Change of Variables

Let \(C = W X \), where \(W \) represents the Wavelet transform matrix

- \(W \) is unitary, \(W^{-1} = W^T \)
- \(X = W^T C \)

Define our prior on \(C \):

\[p(C) = \mathcal{N}(C; \mu_c, D_c) \]

- Now, \(D_c \) is a diagonal matrix, with entries equal to corresponding variances of coefficients
- Off-diagonal elements 0 implies Wavelet co-efficients are un-correlated
- A prior on \(C \) implies a prior on \(X \)
 - \(C \) is just a different representation for \(X \)

IMAGE RESTORATION

\[p(Y|X) = \mathcal{N}(Y; X, \sigma^2 I) \]
\[p(X) = \mathcal{N}(Y; 0.5I, I) \]
\[\hat{X} = \arg\min_X \frac{1}{\sigma} \|Y - X\|^2 + \|X - 0.5I\|^2 \]

- But now, we can use these multi-variate distributions to model correlations and interactions between different pixels
- Let's stay with denoising, but talk about defining a prior in the Wavelet domain
- Instead of saying, individual pixel values are independent, let's say individual wavelet coefficients are independent
- Let's also put different means and variances on different wavelet coefficients
 - All the 'derivative' coefficients have zero mean
 - Variance goes up as we go to coarser levels

IMAGE RESTORATION

\[p(Y|X) = \mathcal{N}(Y; X, \sigma^2 I) \]
\[p(X) = \mathcal{N}(Y; 0.5I, I) \]
\[\hat{X} = \arg\min_X \frac{1}{\sigma} \|Y - X\|^2 + \|X - 0.5I\|^2 \]

- But now, we can use these multi-variate distributions to model correlations and interactions between different pixels
- Let's stay with denoising, but talk about defining a prior in the Wavelet domain
- Instead of saying, individual pixel values are independent, let's say individual wavelet coefficients are independent
- Let's also put different means and variances on different wavelet coefficients
 - All the 'derivative' coefficients have zero mean
 - Variance goes up as we go to coarser levels

IMAGE RESTORATION

Let \(C = W X \), where \(W \) represents the Wavelet transform matrix

- \(W \) is unitary, \(W^{-1} = W^T \)
- \(X = W^T C \)

Define our prior on \(C \):

\[p(C) = \mathcal{N}(C; \mu_c, D_c) \]

- Now, \(D_c \) is a diagonal matrix, with entries equal to corresponding variances of coefficients
- Off-diagonal elements 0 implies Wavelet co-efficients are un-correlated
- A prior on \(C \) implies a prior on \(X \)
 - \(C \) is just a different representation for \(X \)
Let $C = W X$, where W represents the Wavelet transform matrix

$$p(C) = \mathcal{N}(C; \mu_c, D_c)$$

$$p(X) = \frac{1}{\sqrt{(2\pi)^d \det(D_c)}} \exp \left(-\frac{1}{2} (WX - \mu_c)^T D_c (WX - \mu_c) \right)$$

$$\propto \exp \left(-\frac{1}{2} (X - W^T \mu_c)^T W^T D_c W (X - W^T \mu_c) \right)$$

$$\propto \mathcal{N}(X; W^T \mu_c, W^T D_c W)$$

Now, let’s denoise with this prior.

$\hat{X} = \arg\min_X ||X - Y||^2 + (X - \mu)^T \Sigma^{-1} (X - \mu)$

where, $\mu = W^T \mu_c, \Sigma = W^T D_c W$. (We’re assuming noise variance is 1).

How do we minimize this?

Take derivative, set to 0. Check second derivative is positive.

Take gradient (vector derivative), set to 0. Check that “Hessian” is positive-definite.

$y = f(X)$ is a scalar valued function of vector $X \in \mathbb{R}^d$.

- The gradient is a vector same sized as X, with each entry being the partial derivative of y with respect to that element of X.

$$V_X y = \left[\frac{\partial y}{\partial x_1} \at \frac{\partial y}{\partial x_2} \at \vdots \right]$$

- The Hessian is a matrix of size $d \times d$ for $X \in \mathbb{R}^d$.

$$(H_{xy})_{ij} = \frac{\partial^2 y}{\partial x_i \partial x_j}$$

Properties of a multi-variate quadratic form

$$X^T Q X - 2X^T R + S$$

where Q is a symmetric $d \times d$ matrix, R is a d-dimensional vector, S is a scalar.

- Note that this is a scalar value

$$V_X = 2QX - 2R$$

- Comes from the following identities
 - $V_X X^T A X = (A + A^T)X$
 - $V_X X^T R = V_X R^T X = R$
 - The Hessian is simply given by Q (it is constant, doesn’t depend on X)
 - If Q is positive definite, then $V_X = 0$ gives us the unique minimizer.

$V_X = 0 \rightarrow 2QX - 2R = 0 \rightarrow X = Q^{-1} R$
\[\hat{X} = \arg \min_X X^T (I + \Sigma^{-1}) X - 2X^T (Y + \Sigma^{-1} \mu) + (\|Y\|^2 + \mu^T \Sigma^{-1} \mu) \]

\[= \arg \min_X X^T (I + \Sigma^{-1}) X - 2X^T (Y + \Sigma^{-1} \mu) + (\|Y\|^2 + \mu^T \Sigma^{-1} \mu) \]

\[\Sigma^{-1} = (W^T D_c W - \mu) \]

\[\hat{X} = (I + \Sigma^{-1})^{-1} (Y + \Sigma^{-1} \mu) \]

\[\hat{X} = \arg \min \|X - Y\|^2 + (X - \mu)^T \Sigma^{-1} (X - \mu) \]

where, \(\mu = W^T \mu, \Sigma = W^T D_c W\).

\[Q = (I + \Sigma^{-1}) \]

is positive definite (sum of two positive-definite matrices is positive-definite).

\[\hat{X} = (I + \Sigma^{-1})^{-1} (Y + \Sigma^{-1} \mu) \]

\[\Sigma^{-1} = (W^T D_c W - \mu) \]

i.e., taking inverse in the original de-correlated wavelet domain.

\[\Sigma^{-1} \mu = W^T D_c^{-1} W \mu = W^T D_c^{-1} \mu \]

i.e., inverse-wavelet transform of the scaled wavelet coefficients.

So far, we’ve been in a Bayesian setting with a prior.

\[\hat{X} = \arg \min_X X^T (I + \Sigma^{-1}) X - 2X^T (Y + \Sigma^{-1} \mu) + (\|Y\|^2 + \mu^T \Sigma^{-1} \mu) \]

\[= (I + \Sigma^{-1})^{-1} (Y + \Sigma^{-1} \mu) \]

\[\Sigma^{-1} = W^T D_c^{-1} W, \quad \Sigma^{-1} \mu = W^T D_c^{-1} \mu \]

Note that we can’t actually form \(I + \Sigma^{-1}\), let alone invert it; \(d \times d\) matrix, with \(d\) total number of pixels.

\[I + \Sigma^{-1} = I + W^T D_c^{-1} W \]

\[= W^T W + W^T D_c^{-1} W = W^T I W + W^T D_c^{-1} W = W^T (I + D_c^{-1}) W \]

\[(I + \Sigma^{-1})^{-1} = W^T (I + D_c^{-1})^{-1} W \]

\[I + D_c^{-1} \] is also diagonal, so it’s inverse is just inverting diagonal elements.

\[\hat{X} = W^T (I + D_c^{-1})^{-1} W \cdot (Y + W^T D_c^{-1} \mu) \]

We’re balancing off fidelity to observation (first term, likelihood), and what we believe about \(X\) (second term, prior)

But we need \(p(X)\) to be 'a proper' probability distribution. Sometimes, that’s too restrictive.

Instead just think of these as a "data term" (still comes from observation model), and have a generic "regularization" term.

\[\hat{X} = \arg \min_X D(X; Y) + R(X) \]

\[\hat{X} = \arg \min_X \|X - Y\|^2 + \lambda (\|G_x \cdot X\|^2 + \|G_y \cdot X\|^2) \]

Here, \(G_x \cdot X\) is a vector corresponding to the image we get by convolving \(X\) with the Gaussian x-derivative filter.

\[Y = X + \epsilon \rightarrow C_y = C + W \epsilon \]

\(W \epsilon\) is also a random vector with 0 mean, and covariance \(W I W^T = I\).
\[\hat{X} = \arg \min_X \|X - Y\|^2 + \lambda (\|G_x * X\|^2 + \|G_y * X\|^2) \]

- Data term still has the same form as for denoising.
- But now, regularization just says we want the x and y spatial derivatives of our image to be small
 - Encodes a prior that natural images are smooth.
- This isn't a prior. Because gradients aren't a "representation" of \(X \).
- But better, because they don't enforce smoothness at alternate gradient locations.

How do we minimize this?