CSE 559A: Computer Vision

Fall 2020: T-R: 11:30-12:50pm @ Wrighton 300 / Zoom

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Adith Boloor, Patrick Williams

http://www.cse.wustl.edu/~ayan/courses/cse559a/

October 1, 2020
FOURIER TRANSFORM

\[
F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right)
\]

\[
X[n_x, n_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right)
\]

- \(F[u, v]\) and \(X[n_x, n_y]\) are both 2D array of the same size \(W \times H\).
- \(F\) is complex-valued (while \(X\) is typically real-valued)
- These equations are linear. So both the Fourier transform and its inverse are linear operations.
- But each \(F[u, v]\) depends on values of \(X[n_x, n_y]\) at ALL locations (not local like a convolution).
- Note that the \(\exp(\cdot)\) expressions in both are similar—one has a negative sign inside the \(\exp\), indicating a complex conjugate.
- But, in one, we hold \((u, v)\) fixed and sum over \((n_x, n_y)\). In the other, vice-versa.
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} \overline{S}_{uv}[n_x, n_y] X[n_x, n_y] \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp \left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

and \(\overline{S}_{uv} \) denotes the complex-conjugate of \(S_{uv} \).
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

For \(x, y \in \mathbb{C}^n \), \(\langle x, y \rangle = \sum_i x_i y_i \)

- For real vectors, \(\langle x, y \rangle = x^T y \).
- For complex vectors, \(\langle x, y \rangle = x^* y \)
 - \(x^* \) is the Hermitian of \(x \): transpose AND conjugate
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

Property: \(\langle S_{uv}, S_{u'v'} \rangle = 1 \) if \(u' = u \) & \(v' = v \), and 0 otherwise.

Inverse-DFT:

\[X[n_x, n_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp \left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

Property: \(\langle S_{uv}, S_{u'v'} \rangle = 1 \) if \(u' = u \) & \(v' = v \), and 0 otherwise.

Inverse-DFT:

\[X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \ S_{uv} \]

\(X \) is a weighted sum of the \(S_{uv} \) images, weights are given by \(\sqrt{WH}F[u, v] \).
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv} \]

"Frequency" Locations
Stacked to form Vector

\[F[u, v] \]

\[F \]

Spatial Locations
Stacked to form Vector

\[X[n_x, n_y] \]
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv} \]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F = \frac{1}{\sqrt{WH}} S^* X, \quad X = \sqrt{WH} S F \]

\(S \) is a \(WH \times WH \) matrix with each column a different \(S_{uv} \).

\[\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \text{ and } v' = v, \text{ and } 0 \text{ otherwise.} \]

So, \(SS^* = S^* S = I \Rightarrow S^{-1} = S^* \).

- This means \(S \) is a unitary matrix.
- Multiplication by \(S \) is a co-ordinate transform:
 - \(X \) are the co-ordinates of a point in a \(WH \) dimensional space.
 - Multiplication by \(S^* \) changes the ‘co-ordinate system’.
 - In the new co-ordinate system, each ‘dimension’ now corresponds to frequency rather than location.
 - \(S \) is a length-preserving matrix (\(\|S^* X\|^2 = \|X\|^2 \)).
 - It does rotations or reflections (in \(WH \) dimensional space).
FOURIER TRANSFORM

\[X \]
FOURIER TRANSFORM

\[X \]

\[|F|^2 \]
FOURIER TRANSFORM

$$X$$

$$|F|^2$$

$$(W-u) \quad 0 \quad u$$

Zero-centered Co-ordinates for frequencies $[u,v]$
FOURIER TRANSFORM

\[X \quad |F|^2 \quad \angle F \]
FOURIER TRANSFORM

x

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

Reconstruct with only these frequency components
FOURIER TRANSFORM

X $|F|^2$ $\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM
FOURIER TRANSFORM
FOURIER TRANSFORM

A

Magnitude A
Phase B

B

Magnitude B
Phase A
FOURIER TRANSFORM

A

Magnitude A
Phase B

B

Magnitude B
Phase A
FOURIER TRANSFORM

Location of edges / structure, defined by phase more than magnitude.
The FT gave us a different representation for images. Decomposing image into different frequency ‘components’.

What else?
CONVOLUTION THEOREM

Convolution in "matrix" form

Spatial Locations
Stacked to form Vector

$X[n_x, n_y]$
CONVOLUTION THEOREM

Convolution in "matrix" form

\[Y[n_x, n_y] = \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] \ X[n_x - n'_x, n_y - n'_y] \]

Spatial Locations
Stacked to form Vector
CONVOLUTION THEOREM

Convolution in "matrix" form

\[Y[n_x, n_y] \]

Spatial Locations
Stacked to form Vector

\[X[n_x, n_y] \]

Spatial Locations
Stacked to form Vector

\[Y[n_x, n_y] = \sum_{n_x'} \sum_{n_y'} k[n_x', n_y'] \ X[n_x - n_x', n_y - n_y'] \]
Convolution in "matrix" form

\[Y[n_x, n_y] \rightarrow Y = \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] \cdot X[n_x - n'_x, n_y - n'_y] \rightarrow X[n_x, n_y] \]

Spatial Locations Stacked to form Vector
Spatial Locations Stacked to form Vector
CONVOLUTION THEOREM

Convolution in "matrix" form

\[Y[n_x, n_y] \begin{bmatrix} \vdots \end{bmatrix} = \begin{bmatrix} \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] X[n_x - n'_x, n_y - n'_y] \end{bmatrix} \]

- Mostly 0 (sparse)
- Has \(w_x, h_x \) non-zero entries per row.
- Same set of values, but at different places in each row

Spatial Locations Stacked to form Vector

Spatial Locations Stacked to form Vector
CONVOLUTION THEOREM

\[Y = X \ast k \Rightarrow Y = A_k X \]

\(A_k \) is not square for valid / long convolution.

Question:

Let \(Y = A_k X \) correspond to \(Y = X \ast \text{valid} \ k \). Now, let \(X' = A_k^T Y \). How is \(X' \) related to \(Y \) by convolution?
What operation does \(A_k^T \) represent?

A: Full convolution with \(k[-n_x, -n_y] \) (flipped version of \(k \))
CONVOLUTION THEOREM

\[Y = X \ast k \Rightarrow Y = A_k X \]

Now if we consider the square \(A_k \) matrix corresponding to ‘same’ convolution with circular padding:

\[
\begin{align*}
X[W + n_x, n_y] &= X[n_x, n_y] \\
X[n_x, -n_y] &= X[n_x, H - n_y]
\end{align*}
\]

Then, \(A_k \) is diagonalized by the Fourier Transform!

\[A_k = S D_k S^* \]

- Here, \(D_k \) is a diagonal matrix.
- The above equation holds for every \(A_k \)
 - You get different diagonal matrices \(D_k \).
 - But \(S \) is the diagonalizing basis for all kernels.
- In the Fourier co-ordinate system, convolution is a ‘point-wise’ operation!

\[Y = A_k X = S D_k S^* X \Rightarrow (S^*Y) = D_k(S^*X) \]
CONVOLUTION THEOREM

Why does this happen?

- \(X = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \)
- \(Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \ast k \) (by linearity / distributivity)
- \((S_{uv} \ast k)[n] = \sum_{n'} k[n'] S_{uv}[n - n'] \)
- \(S_{uv}[n - n'], \) assuming circular padding, is also a sinusoid with the same frequency \((u, v)\) and magnitude, but different phase.
- Multiplying by \(k[n'] \) changes the magnitude, but frequency still the same.
- Adding different sinusoids of the same frequency gives you another sinusoid of the same frequency.
- \((S_{uv} \ast k)[n_x, n_y] = d_{uv;k} S_{uv}[n_x, n_y], \) where \(d_{uv;k} \) is some complex scalar.

Sinusoids are eigen-functions of convolution

\[
Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \ast k = \sqrt{WH} \sum_{u,v} \left(F[u, v] d_{uv;k} \right) S_{uv}
\]
CONVOLUTION THEOREM

\[A_k = S D_k S^* \]

- What’s more, the diagonal elements of \(D_k \) are the Fourier transform of \(k \) (assuming it’s of size \(W \times H \)).

\[D_k = \text{diag}\left(\frac{1}{\sqrt{WH}} S^* k \right) \]

- This is the convolution theorem.
 - Computational advantage for performing (and inverting!) convolution, albeit under circular padding.
 - Good way of analyzing what a kernel is doing by looking at its Fourier transform.
Doing Convolutions in the Fourier Domain:
- DFT, Point-wise multiply with FT of kernel, Inverse DFT
- Need to keep in mind some padding / size issues.
Kernel has to be the same size as the image.
Kernel has to be the same size as the image.

1. Zero-pad
Kernel has to be the same size as the image.

1. Zero-pad
Kernel has to be the same size as the image.

1. Zero-pad
CONVOLUTION THEOREM

Kernel has to be the same size as the image.

1. Zero-pad
2. Circularly shift to center at (0,0)
Kernel has to be the same size as the image.
- From same circular, you can always get 'valid' by cropping.
- To get full / same with zero-padding, pad your original image first.

1. Zero-pad
2. Circularly shift to center at (0,0)
Kernel / Fourier Transform (magnitude) Pairs
Kernel / Fourier Transform (magnitude) Pairs

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.
CONVOLUTION THEOREM

Kernel / Fourier Transform (magnitude) Pairs

Kernel

Magnitude

Kernel

Magnitude

Gaussian Derivatives: Band-pass

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.
CONVOLUTION THEOREM

Kernel / Fourier Transform (magnitude) Pairs

Kernel

Magnitude

Kernel

Magnitude

Gaussian Derivatives: Band-pass

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.

For more indepth coverage:
Szeliski Sec 3.4
SCALE & ALIASING

"Resize" Images

(W/2) x (H/2)
"Resize" Images

\[
\text{W x H}
\]

\[(W/2) \times (H/2)\]
"Resize" Images
SCALE & ALIASING

"Resize" Images

[W x H]

(W/2) x (H/2)

[Source: Wikipedia]
SCALE & ALIASING

"Resize" Images

"Aliasing"

[Source: Wikipedia]
Remember, in the two cases $F[u,v]$ is defined with respect to different width and height W_x and H_x, and for different ranges of (u,v).
SCALE & ALIASING

If you write it out, you see the higher freq. components get folded into lower freq.

Remember, in the two cases $F[u,v]$ is defined with respect to different width and height W_x and H_x, and for different ranges of (u,v).
SCALE & ALIASING

If you write it out, you see the higher freq. components get folded into lower freq.

Make sure there are no high frequencies before sub-sampling!

Remember, in the two cases $F[u,v]$ is defined with respect to different width and height W_x and H_x, and for different ranges of (u,v).
Make sure there are no high frequencies before sub-sampling!

Low-pass filter, i.e., Smooth Image before sub-sampling.
SCALE & ALIASING

Without Smoothing

With Smoothing
Sometimes the camera itself makes aliased measurements: if spatial sensitivity is low at edges of pixel.
"Resize" Images

- Need to hallucinate missing information.
- Lots of research (super-resolution).
"Resize" Images

- Need to hallucinate missing information.
- Lots of research (super-resolution).
- Simplest Approach: Nearest neighbor

\[Y[n] = X[\text{round}(n/2)] \]
"Resize" Images

- Need to hallucinate missing information.
- Lots of research (super-resolution).
- Simplest Approach: Nearest neighbor
- Simple Approach: (Bi) Linear Interpolation
"Resize" Images

- Need to hallucinate missing information.
- Lots of research (super-resolution).
- Simplest Approach: Nearest neighbor
- Simple Approach: (Bi) Linear Interpolation
"Resize" Images

- Need to hallucinate missing information.
- Lots of research (super-resolution).
- Simplest Approach: Nearest neighbor
- Simple Approach: (Bi) Linear Interpolation

For up-sampling by 2 in 1-D, missing values are just the average of the left and right present values.
SCALE & ALIASING
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
SCALE & ALIASING

Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
Can achieve this by filling with zeros, and convolution with a 3x3 kernel.
EFFICIENT COMPUTATION

- Convolution, in the most general case, takes $O(n_x n_k)$ time.
 - $n_x = W_x H_x, n_k = W_k H_k$.
- Convolution in the frequency domain:
 - FFT, point-wise multiply, Inverse FFT
 - FFT/IFFT complexity is $O(n_x \log n_x)$ (Most efficient for power of 2 image size)
 - May be worth it for large kernels
 - Or same image convolved with many different kernels
Separable Kernels

\[G[n_x, n_y] \propto \exp \left(-\frac{n_x^2 + n_y^2}{2\sigma^2} \right) = G_x[n_x]G_y[n_y] \]

- \(x \)- and \(y \)- derivatives of Gaussian also separable.

- Realize that \(k[n_x, n_y] = k_x[n_x]k_y[n_y] = k_x \ast_{\text{full}} k_y \).

This is by interpreting \(k_x \) and \(k_y \) as having size \(W_k \times 1 \) and \(1 \times H_k \).

- So \(X \ast k = X \ast (k_x \ast k_y) = (X \ast k_x) \ast k_y \). This takes \(W_k + H_k \) operations instead of \(W_kH_k \).

- Often if a kernel itself isn’t separable, it can be sometimes expressed as a sum of separable kernels.
- E.g., Unsharp Mask: \((1 + \alpha)\delta - \alpha G_\sigma \) (don’t combine!)