LAST TIME

- Convolutions
 - Simplest spatial linear operation
 - Output at each pixel is a function of a limited number of pixels in the input
 - Linear Function
 - Same function for different neighborhoods

- Edge & Line Detection: A Stereotypical Vision Algorithm Pipeline
 - Use convolutions to detect local image properties (Gradients)
 - Apply local non-linear processing to get local features (Edges)
 - Aggregate information to find long-range structures (Lines)

OFFICE HOURS

- This Friday (and this Friday only):
 - Zhihao’s Office Hours in Jolley 431 instead of 309.
- Monday Office Hours:
 - 5:30-6:30pm, Collaboration Space @ Jolley 217.

- PSET 0 Due Today by 11:59pm
 - Any issues with submissions, post on Piazza.

OTHER NEIGHBORHOOD OPERATIONS

Median Filter / Order Statistics

\[Y[n] = \text{Median}\{X[n - n'], N \}\] \(n' \in \{0,1\} \)

- Neighborhood function \(N[n'] \in \{0,1\} \)
- Often better at removing outliers than convolution.

- Other ops: \(Y[n] = \max / \min\{X[n - n'], N[n']\} \) \(N[n'] \geq 0 \)
OTHER NEIGHBORHOOD OPERATIONS

Morphological Operations

- Conducted on binary images \(X[n] \in \{0, 1\} \)
- Erosion: \(Y[n] = \text{AND} \ (X[n-n'] |_{n'=1}^M) = 1 \) if all neighbors 1
- Dilation: \(Y[n] = \text{OR} \ (X[n-n'] |_{n'=1}^M) = 1 \) if any neighbor 1
- Opening: Erosion followed by Dilation
- Closing: Dilation followed by Erosion

See Szeliski Sec 3.3.2

Figure 3.32: Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 3 x 3 square.

See Szeliski Sec 3.3.2

BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[
X \quad Y = X \ast G
\]

\[
G[n_1, n_2] = G[n_1 - n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} \right)
\]

\[
\sum_{n_2} G[n_1, n_2] = 1
\]

BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[
X \quad Y = X \ast G
\]

\[
B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma^2} \right)
\]

\[
\sum_{n_2} B[n_1, n_2] = 1
\]

Make the filter weights data dependent!
BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma_x^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]

BILATERAL FILTERING

Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma_x^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]

BILATERAL FILTERING

Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma_x^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]

BILATERAL FILTERING

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma_x^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]
BILATERAL FILTERING

- Guided Bilateral Filter: \(B[n_1, n_2] \) based on a separate image \(Z[n] \): depth, infra-red, etc.
- Far less efficient than convolution
 - Filter also has to be computed, normalized, at each output location.
 - Efficient Datastructures Possible
- Further Reading:
 - Paris et al., SIGGRAPH/CVPR Course on Bilateral Filtering
 - Recent work on using this for inference, best paper runner up at ECCV 2016
 - Barron & Poole, The Fast Bilateral Solver, ECCV 2016

BILATERAL FILTERING

\[
B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right)
\]

Gaussian Filter Result

FOURIER TRANSFORM

Quick Recap: Complex Numbers

- A complex number \(f = x + jy \) where \(x \) and \(y \) are scalar numbers.
 - \(j = \sqrt{-1} \) (EE convention; we use \(j \) instead of \(i \))
 - \(x \) and \(y \) are called the real and imaginary components of \(f \)

Think of \(f \) as a 2-D vector with special definitions of addition, multiplication, etc.

- \((x_1 + jy_1) + (x_2 + jy_2) = (x_1 + x_2) + j(y_1 + y_2) \)
- \((x_1 + jy_1) \times (x_2 + jy_2) = (x_1x_2 - y_1y_2) + j(x_2y_1 + x_1y_2) \)
- \((x_1 + jy_1) \times x_2 = x_1x_2 + jy_1x_2 \)
- Conjugate: \(x + jy = x - jy = x + j(-y) \)
- Magnitude: \((x + jy) \times (x + jy) = x^2 + y^2 \)
Quick Recap: Complex Numbers

Euler’s Formula
\[\exp(i\theta) = \cos \theta + j \sin \theta \]
\[x + jy = M \exp(i\theta) \]
\[M = \sqrt{x^2 + y^2}, \theta = \tan^{-1}(y, x) \]
\[\theta \text{ is called the “phase”} \]
\[M \exp(i\theta) = M \exp(-i\theta) \]
\[(x + jy) \times \exp(i\theta_0) = M \exp(i(\theta + \theta_0)) \]
\[\text{Preserves magnitude, adds to phase} \]
\[\exp(i0) = 1 \]
\[\exp(iN\pi) = 1 \text{ where } N \text{ is an even integer, and } = -1 \text{ where } N \text{ is an odd integer.} \]
\[\text{Real in both cases} \]

The Discrete 2D Fourier Transform
\[F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]
\[\exp(j\theta) = \cos \theta + j \sin \theta \]

\[\exp\left(-j 2\pi \left(\frac{(u + W) n_x}{W} + \frac{v n_y}{H}\right)\right) = \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]
\[= \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \exp\left(-j 2\pi \frac{2n_x}{W}\right) \]
\[= \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]

Can be implemented fairly efficiently using the FFT algorithm: \(O(n \log n) \)
(Often, FFT is used to refer to the operation itself.)
The Discrete 2D Fourier Transform Pair

\[F[X] = F[u, v] = \frac{1}{WH} \sum_{n_u=0}^{W-1} \sum_{n_v=0}^{H-1} X[n_u, n_v] \exp \left(-j 2\pi \left(\frac{u n_u}{W} + \frac{v n_v}{H} \right) \right) \]

\[F^{-1}[F] = X[n_u, n_v] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp \left(j 2\pi \left(\frac{u n_u}{W} + \frac{v n_v}{H} \right) \right) \]

- If \(X \) is real-valued, \(F[-u, -v] = \bar{F}[u, v] \) where \(\bar{F} \) implies complex conjugate.
- \(F[0, 0] \) is often called the DC component. It is the average intensity of \(X \). It is real if \(X \) is real.
- Only \(WH \) independent *numbers* in \(F[u, v] \) (counting real and imaginary separately) if \(X \) is real.
- Parseval’s Theorem: (energy preserving up to constant factor)
 \[\sum_{u,v} ||F[u,v]||^2 = \sum_{u,v} F[u,v] \bar{F}[u,v] = \frac{1}{WH} \sum_{n_u,n_v} ||X[n_u,n_v]||^2 \]

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \sum_{n_u=0}^{W-1} \sum_{n_v=0}^{H-1} S_{uv}[n_u, n_v] X[n_u, n_v] \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_u, n_v] = \frac{1}{\sqrt{WH}} \exp \left(j 2\pi \left(\frac{u n_u}{W} + \frac{v n_v}{H} \right) \right) \]

For \(x, y \in \mathbb{C^n} \), \((x, y) = x^* y \)
- \(x^* \) is the Hermitian of \(x \)
 - Transpose + Conjugate (transpose the vector, and take conjugate of each entry)
- \(x^* y = \sum_{i} \bar{x}_i y_i \)
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \) (scaled by \(\sqrt{WH} \)).

\[S_{uv} = \text{image} \]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle, \]

\[X = \sqrt{WH} \sum_{v=0}^{H-1} \sum_{u=0}^{W-1} F[u, v] S_{uv} \]

\[\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \text{ and } v' = v, \text{ and 0 otherwise.} \]

\[S \] is a \(WH \times WH \) matrix with each column a different \(S_{uv} \).

So, \(SS^* = S^*S = I \Rightarrow S^{-1} = S^* \).

- This means \(S \) is a unitary matrix.
- Multiplication by \(S \) is a co-ordinate transform:
 - \(X \) are the co-ordinates of a point in a \(WH \) dimensional space.
 - Multiplication by \(S^* \) changes the 'co-ordinate system'.
 - In the new co-ordinate system, each 'dimension' now corresponds to frequency rather than location.
 - \(S \) is a length-preserving matrix (\(||S^*X||^2 = ||X||^2 \)).
 - It does rotations or reflections (in \(WH \) dimensional space).

Reconstruct with only these frequency components.
FOURIER TRANSFORM

X $|F|^2$ $\angle F$

Reconstruct with only these frequency components

FOURIER TRANSFORM

X $|F|^2$ $\angle F$

Reconstruct with only these frequency components

FOURIER TRANSFORM

X $|F|^2$ $\angle F$

Reconstruct with only these frequency components

FOURIER TRANSFORM

A Magnitude A Phase B

Location of edges / structure, defined by phase more than magnitude.

B Magnitude B Phase A
CONVOLUTION THEOREM

Convolutions in “matrix” form:

\[
Y[n_x, n_y] = \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] X[n_x - n'_x, n_y - n'_y]
\]

CONVOLUTION THEOREM

\[
Y = X \ast k \Rightarrow Y = A_k X
\]

CONVOLUTION THEOREM

\[
Y = X \ast k \Rightarrow Y = A_k X
\]

\[
A_k \text{ is not square for valid / long convolution.}
\]

Question:
Let \(Y = A_k X \) correspond to \(Y = X \ast k \). Now, let \(X' = A_k^T Y \). How is \(X' \) related to \(Y \) by convolution?

What operation does \(A_k^T \) represent?

A: Full convolution with \(k[-n_x, -n_y] \) (flipped version of \(k \))

Why does this happen?

- \(X = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} \)
- \(Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} \ast k \) (by linearity / distributivity)
- \((S_{uv} \ast k)[n] = \sum_{n'} k[n'] S_{uv}[n - n'] \)
- \(S_{uv}[n - n'] \), assuming circular padding, is also a sinusoid with the same frequency \((u, v) \) and magnitude, but different phase.
- Multiplying by \(k[n'] \) changes the magnitude, but frequency still the same.
- Adding different sinusoids of the same frequency gives you another sinusoid of the same frequency.

\[
(S_{uv} \ast k)[n, n_i] = d_{uv,k} S_{uv}[n, n_i], \text{ where } d_{uv,k} \text{ is some complex scalar.}
\]

Sinusoids are eigen-functions of convolution

\[
Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u,v] S_{uv} \ast k = \sqrt{WH} \sum_{u,v} (F[u,v] d_{uv,k}) S_{uv}
\]
CONVOLUTION THEOREM

\[A_k = S D_k S^* \]

- What's more, the diagonal elements of \(D_k \) are the \((W_y \times W_x)\) Fourier transform of \(k \).

\[D_k = \text{diag} \left(\frac{1}{\sqrt{WH}} S^* k \right) \]

- This is the convolution theorem.
 - Computational advantage for performing (and inverting!) convolution, albeit under circular padding.
 - Good way of analyzing what a kernel is doing by looking at its Fourier transform.
- Why did we use complex numbers? Like quaternions in Graphics, for convenience!
 - If we used real number co-ordinate transform, convolution would convert to several \(2 \times 2 \) transforms on pairs of co-ordinates.
 - Complex numbers are just a way of grouping these pairs into a single 'number'.

CONVOLUTION THEOREM

Doing Convolutions in the Fourier Domain:
- DFT, Point-wise multiply with FT of kernel, Inverse DFT
- Need to keep in mind some padding / size issues.

Kernel / Fourier Transform (magnitude) Pairs

1. Zero-pad
2. Circularly shift to center at \((0,0)\)

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.

For more indepth coverage:
Szeliski Sec 3.4