CSE 559A: Computer Vision

Fall 2018: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Zhihao Xia, Charlie Wu, Han Liu

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 6, 2018
This Friday (and this Friday only):
 • Zhihao's Office Hours in Jolley 431 instead of 309.

Monday Office Hours:
 • 5:30-6:30pm, Collaboration Space @ Jolley 217.

PSET 0 Due Today by 11:59pm
 • Any issues with submissions, post on Piazza.
LAST TIME

- Convolutions
 - Simplest spatial linear operation
 - Output at each pixel is a function of a limited number of pixels in the input
 - Linear Function
 - Same function for different neighborhoods

- Edge & Line Detection: A Stereotypical Vision Algorithm Pipeline
 - Use convolutions to detect local image properties (Gradients)
 - Apply local non-linear processing to get local features (Edges)
 - Aggregate information to find long-range structures (Lines)
OTHER NEIGHBORHOOD OPERATIONS

Median Filter / Order Statistics

\[Y[n] = \text{Median}\{X[n - n']\}_{N[n'] = 1} \]

- Neighborhood function \(N[n'] \in \{0, 1\} \)
- Often better at removing outliers than convolution.

Other ops: \(Y[n] = \max / \min\{X[n - n']\}_{N[n']>0} \)

Morphological Operations

- Conducted on binary images ($X[n] \in \{0, 1\}$)
- Erosion: $Y[n] = \text{AND} \{X[n - n']\}_{N[n'] = 1} (1 \text{ if all neighbors } 1)$
- Dilation: $Y[n] = \text{OR} \{X[n - n']\}_{N[n'] = 1} (1 \text{ if any neighbor } 1)$
- Opening: Erosion followed by Dilation
- Closing: Dilation followed by Erosion

See Szeliski Sec 3.3.2

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.
Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[Y = X \ast G \]

\[G'[n_1, n_2] = G[n_1 - n_2] \propto \exp\left(-\frac{|n_1 - n_2|^2}{2\sigma^2}\right) \]

\[\sum_{n_2} G'[n_1, n_2] = 1 \]

\[Y[n] = \sum_{n'} G[n']X[n - n'] \]

\[Y[n_1] = \sum_{n_2} G'[n_1, n_2]X[n_2] \]
Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[Y = X * G \]

\[G'[n_1, n_2] = G[n_1 - n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} \right) \]

\[\sum_{n_2} G'[n_1, n_2] = 1 \]
BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[
X
\]

Make the filter weights data dependent!

\[
B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_1^2} \right)
\]

\[
\sum_{n_2} B[n_1, n_2] = 1
\]
BILATERAL FILTERING

Denoising by Smoothing (with a Gaussian filter):

\[X \]

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_f^2} \right) \]

\[\sum_{n_2} B[n_1, n_2] = 1 \]
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_1^2} \right) \]
BILATERAL FILTERING

Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]

\(\sigma_I \) High

Gaussian Filter Result
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma^2_I} \right) \]

\(\sigma_I \) Medium

Gaussian Filter Result
Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_I^2} \right) \]
BILATERAL FILTERING

Denoising with a Bilateral Filter

\[B[n_1, n_2] \propto \exp \left(-\frac{|n_1 - n_2|^2}{2\sigma^2} - \frac{|X[n_1] - X[n_2]|^2}{2\sigma_i^2} \right) \]

\(\sigma_I\) Low Repeated

Gaussian Filter Result
Guided Bilateral Filter: $B[n_1, n_2]$ based on a separate image $Z[n]$: depth, infra-red, etc.

Far less efficient than convolution
- Filter also has to be computed, normalized, at each output location.
- Efficient Datastructures Possible

Further Reading:
- Paris et al., SIGGRAPH/CVPR Course on Bilateral Filtering
- Recent work on using this for inference, best paper runner up at ECCV 2016
Quick Recap: Complex Numbers

- A complex number \(f = x + jy \) where \(x \) and \(y \) are scalar numbers.
 - \(j = \sqrt{-1} \) (EE convention: we use \(j \) instead of \(i \))
 - \(x \) and \(y \) are called the real and imaginary components of \(f \)

Think of \(f \) as a 2-D vector with special definitions of addition, multiplication, etc.

- \((x_1 + jy_1) + (x_2 + jy_2) = (x_1 + x_2) + j(y_1 + y_2)\)
- \((x_1 + jy_1) \times (x_2 + jy_2) = (x_1x_2 - y_1y_2) + j(x_2y_1 + x_1y_2)\)
- \((x_1 + jy_1) \times x_2 = x_1x_2 + jy_1x_2\)
- Conjugate: \(x + jy = x - jy = x + j(-y) \)
- Magnitude: \((x + jy) \times (x + jy) = x^2 + y^2 \)
Quick Recap: Complex Numbers

Euler's Formula

- \(\exp(j\theta) = \cos \theta + j \sin \theta \)
- \(x + jy = M \exp(j\theta) \)
 - \(M = \sqrt{x^2 + y^2}, \theta = \tan^{-1}(y, x) \)
 - \(\theta \) is called the "phase"
- \(M \exp(j\theta) = M \exp(-j\theta) \)
- \((x + jy) \times \exp(j\theta_0) = M \exp(j(\theta + \theta_0)) \)
 - Preserves magnitude, adds to phase
- \(\exp(j0) = 1 \)
- \(\exp(jN\pi) = 1 \) where \(N \) is an even integer, and \(= -1 \) where \(N \) is an odd integer.
 - Real in both cases
The Discrete 2D Fourier Transform

\[
F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp \left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right)
\]

\[
\exp(j \theta) = \cos \theta + j \sin \theta
\]

- Defined for a single-channel / grayscale image \(X \).
- \(F \) is a "complex valued" array indexed by integers \(u, v \).
- Each \(F[u, v] \) depends on the intensities at all pixels.
The Discrete 2D Fourier Transform

\[
F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right)
\]

\[
\exp(j \theta) = \cos \theta + j \sin \theta
\]

\[
\exp\left(-j 2\pi \left(\frac{(u + W) n_x}{W} + \frac{v n_y}{H} \right) \right) = \exp\left(-j 2\pi \left(\frac{u n_x}{W} + n_x + \frac{v n_y}{H} \right) \right)
\]

\[
= \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) - j 2n_x \pi \right) = \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \times \exp(-j 2n_x \pi)
\]

\[
= \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right)
\]
The Discrete 2D Fourier Transform

\[F[X] = F[u,v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x,n_y] \exp(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right)) \]

\[\exp(j \theta) = \cos \theta + j \sin \theta \]

- Therefore, we typically store \(F[u,v] \) for \(u \in \{0, \ldots, W-1\}, v \in \{0, \ldots, H-1\} \).
- Can think of \(F[u,v] \) as a complex-valued "image" with the same number of pixels as \(X \).

Can be implemented fairly efficiently using the FFT algorithm: \(O(n \log n) \) (often, FFT is used to refer to the operation itself).
The Discrete 2D Fourier Transform Pair

\[F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]

\[F^{-1}[F] = X[n_x, n_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]

- If \(X \) is real-valued, \(F[-u, -v] = F[W-u, H-v] = \bar{F}[u, v] \), where \(\bar{F} \) implies complex conjugate.
- \(F[0, 0] \) is often called the DC component. It is the average intensity of \(X \). It is real if \(X \) is real.
- Only \(WH \) independent "numbers" in \(F[u, v] \) (counting real and imaginary separately) if \(X \) is real.
- Parseval's Theorem: (energy preserving up to constant factor)

\[\sum_{u,v} \|F[u, v]\|^2 = \sum_{u,v} F[u, v] \bar{F}[u, v] = \frac{1}{WH} \sum_{n_x, n_y} \|X[n_x, n_y]\|^2 \]
The Discrete 2D Fourier Transform Pair

\[F[X] = F[u, v] = \frac{1}{WH} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} X[n_x, n_y] \exp\left(-j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]

\[F'[u, v] = F[u, v] \times \exp\left(-j 2\pi \left(\frac{u t_x}{W} + \frac{v t_y}{H}\right)\right) \]

\[F^{-1}[F'] = X[n_x + t_x, n_y + t_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F'[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H}\right)\right) \]

for a fixed integers \(t_x, t_y \)

A change in the phase of the Fourier coefficients, that is linear in \(u, v \), leads to a translation in the image.
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \sum_{n_x=0}^{W-1} \sum_{n_y=0}^{H-1} \tilde{S}_{uv}[n_x, n_y] X[n_x, n_y] \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right)\right) \]
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

For \(x, y \in \mathbb{C}^n \), \(\langle x, y \rangle = x^*y \)

- \(x^* \) is the Hermitian of \(x \)
 - Transpose + Conjugate (transpose the vector, and take conjugate of each entry)
- \(x^*y = \sum_i \bar{x}_i y_i \)
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \langle S_{uv}, X \rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

Property: \(\langle S_{uv}, S_{u'v'} \rangle = 1 \) if \(u' = u \) & \(v' = v \), and 0 otherwise.

Inverse-DFT:

\[X[n_x, n_y] = \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]
DFT as a Co-ordinate Transform

\[F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle \]

where each \(S_{uv} \) can be thought of as a different (complex-valued) image:

\[S_{uv}[n_x, n_y] = \frac{1}{\sqrt{WH}} \exp\left(j 2\pi \left(\frac{u n_x}{W} + \frac{v n_y}{H} \right) \right) \]

\(F[u, v] \) is the inner-product between \(X \) and \(S_{uv} \). (scaled by \(\sqrt{WH} \))

Property: \(\langle S_{uv}, S_{u'v'} \rangle = 1 \) if \(u' = u \) & \(v' = v \), and 0 otherwise.

Inverse-DFT:

\[X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv} \]

\(X \) is a weighted sum of the \(S_{uv} \) images, weights are given by \(\sqrt{WH}F[u, v] \).
DFT as a Co-ordinate Transform

\[
F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv}
\]

\[
\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \& v' = v, \text{ and } 0 \text{ otherwise.}
\]
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[
F[u, v] = \frac{1}{\sqrt{WH}} \left\langle S_{uv}, X \right\rangle, \quad X = \sqrt{WH} \sum_{u=0}^{W-1} \sum_{v=0}^{H-1} F[u, v] S_{uv}
\]

\[
\langle S_{uv}, S_{u'v'} \rangle = 1 \text{ if } u' = u \& v' = v, \text{ and } 0 \text{ otherwise.}
\]

"Frequency" Locations
Stacked to form Vector

Spatial Locations
Stacked to form Vector
FOURIER TRANSFORM

DFT as a Co-ordinate Transform

\[F = \frac{1}{\sqrt{WH}} S^* X, \quad X = \sqrt{WH} S F \]

\(S \) is a \(WH \times WH \) matrix with each column a different \(S_{uv} \).

So, \(SS^* = S^* S = I \Rightarrow S^{-1} = S^* \).

- This means \(S \) is a unitary matrix.
- Multiplication by \(S \) is a co-ordinate transform:
 - \(X \) are the co-ordinates of a point in a \(WH \) dimensional space.
 - Multiplication by \(S^* \) changes the 'co-ordinate system'.
 - In the new co-ordinate system, each 'dimension' now corresponds to frequency rather than location.
 - \(S \) is a length-preserving matrix (\(\|S^* X\|^2 = \|X\|^2 \)).
 - It does rotations or reflections (in \(WH \) dimensional space).
FOURIER TRANSFORM

X

$|F|^2$

Zero-centered Co-ordinates for frequencies $[u,v]$
FOURIER TRANSFORM

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

X

$|F|^2$

$\angle F$

Reconstruct with only these frequency components
FOURIER TRANSFORM

Location of edges / structure, defined by phase more than magnitude.
CONVOLUTION THEOREM

Convolution in "matrix" form

\[Y[n_x, n_y] \rightarrow [\mathbf{Y}] = \mathbf{A}_k \rightarrow X[n_x, n_y] \]

Spatial Locations
Staked to form Vector

- Mostly 0 (sparse)
- Has \(w_k \) non-zero entries per row.
- Same set of values, but at different places in each row

Spatial Locations
Staked to form Vector

\[
Y[n_x, n_y] = \sum_{n'_x} \sum_{n'_y} k[n'_x, n'_y] \cdot X[n_x - n'_x, n_y - n'_y]
\]
$
Y = X * k \Rightarrow Y = A_k X$

A_k is not square for valid / long convolution.

Question:

Let $Y = A_k X$ correspond to $Y = X \ast_{\text{valid}} k$. Now, let $X' = A_k^T Y$. How is X' related to Y by convolution?

What operation does A_k^T represent?

A: Full convolution with $k[-n_x, -n_y]$ (flipped version of k)
CONVOLUTION THEOREM

\[Y = X * k \Rightarrow Y = A_k X \]

Now if we consider the square \(A_k \) matrix corresponding to 'same' convolution with circular padding, i.e. padding as \(X[W + n_x, n_y] = X[n_x, n_y], X[n_x, -n_y] = X[n_x, H - n_y] \), etc.

Then, \(A_k \) is \textit{diagonalized} by the Fourier Transform!

\[A_k = S \ D_k \ S^* \]

- Here, \(D_k \) is a diagonal matrix.
- The above equation holds for every \(A_k \)
 - You get different diagonal matrices \(D_k \).
 - But \(S \) is the diagonalizing basis for all kernels.
- In the Fourier co-ordinate system, convolution is a 'point-wise' operation!

\[Y = A_k X = S \ D_k \ S^* \ X \Rightarrow (S^* Y) = D_k(S^* X) \]
CONVOLUTION THEOREM

Why does this happen?

1. \[X = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \]
2. \[Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \ast k \text{(by linearity / distributivity)} \]
3. \[(S_{uv} \ast k)[n] = \sum_{n'} k[n'] S_{uv}[n - n'] \]
4. \(S_{uv}[n - n'] \), assuming circular padding, is also a sinusoid with the same frequency \((u, v)\) and magnitude, but different phase.
5. Multiplying by \(k[n'] \) changes the magnitude, but frequency still the same.
6. Adding different sinusoids of the same frequency gives you another sinusoid of the same frequency.
7. \((S_{uv} \ast k)[n_x, n_y] = d_{uv:k} S_{uv}[n_x, n_y] \), where \(d_{uv:k} \) is some complex scalar.

\textit{Sinusoids are eigen-functions of convolution}

\[Y = X \ast k = \sqrt{WH} \sum_{u,v} F[u, v] S_{uv} \ast k = \sqrt{WH} \sum_{u,v} \left(F[u, v] d_{uv:k} \right) S_{uv} \]
CONVOLUTION THEOREM

\[A_k = S \, D_k \, S^* \]

- What's more, the diagonal elements of \(D_k \) are the \((W_x \times W_y)\) Fourier transform of \(k \).

\[D_k = \text{diag}\left(\frac{1}{\sqrt{WH}} S^* k \right) \]

- This is the convolution theorem.
 - Computational advantage for performing (and inverting!) convolution, albeit under circular padding.
 - Good way of analyzing what a kernel is doing by looking at its Fourier transform.
- Why did we use complex numbers? Like quaternions in Graphics, for convenience!
 - If we used real number co-ordinate transform, convolution would convert to several \(2 \times 2 \) transforms on pairs of co-ordinates.
 - Complex numbers are just a way of grouping these pairs into a single 'number'.
Doing Convolutions in the Fourier Domain:
- DFT, Point-wise multiply with FT of kernel, Inverse DFT
- Need to keep in mind some padding / size issues.
Kernel has to be the same size as the image.

- From same circular, you can always get 'valid' by cropping.
- To get full / same with zero-padding, pad your original image first.

1. Zero-pad
2. Circularly shift to center at (0,0)
Kernel / Fourier Transform (magnitude) Pairs

Gaussian Kernels: Low Pass (attenuate higher frequencies)
Larger spatial support: smaller Fourier support.

Gaussian Derivatives: Band-pass

For more indepth coverage:
Szeliski Sec 3.4