GENERAL

- Last class.
- Project Reports Due Next Tuesday Night!
- Created a repository to submit project reports.
 - Include your report as report.pdf (keep this name consistent).
 - Don’t forget to git add, git commit, and git push.
 - Don’t include code, but hang on to it!
- Keys for PSET 5 can be picked up after next week. Will post location/times on piazza.

CONDITIONAL GANS

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
UC Berkeley
In ICCV 2017
CONDITIONAL GANS

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

UC Berkeley

In ICCV 2017

* Indicates equal contribution

ADVERSARIAL LOSS

- Train with

\[
\begin{align*}
L(G) &= \|G(x) - y\|^2 - \lambda \log D(G(x)) \\
L(D) &= -\log(1 - D(G(x))) - \log D(y)
\end{align*}
\]

- The GAN loss is unconditional, but there is also a reconstruction loss.
- So the loss says, be close to the true answer, but make your output resemble natural images.

VARIATIONAL AUTO-ENCODERS

Regular Auto-encoder:

\[X \rightarrow \text{Encoder} \rightarrow Z \rightarrow \text{Decoder} \rightarrow \hat{X} \]

Train with \(\|X - \hat{X}\|^2 \)

Variational Auto-encoder:

\[X \rightarrow \text{Encoder} \rightarrow \mu, \Sigma \rightarrow \text{Sample} \rightarrow Z \rightarrow \text{Decoder} \rightarrow \hat{X} \]

Train with \(\|X - \hat{X}\|^2 \)
VARIATIONAL AUTO-ENCODERS

How do you back-propagate through sampling?

Variational Auto-encoder

\[X \xrightarrow{\text{Encoder}} \mu, \Sigma \xrightarrow{\text{Sample}} Z \xrightarrow{\text{Decoder}} \hat{X} \]

Train with \[||X - \hat{X}||^2 + KL(\mathcal{N}(\mu, \Sigma) || \mathcal{N}(0, I)) \]

At Test Time,

\[0, I \xrightarrow{\text{Sample}} Z \xrightarrow{\text{Decoder}} \hat{X} \]

Train with \[||X - \hat{X}||^2 + KL(\mathcal{N}(\mu, \Sigma) || \mathcal{N}(0, I)) \]

VARIATIONAL AUTO-ENCODERS

CONDITIONAL VARIATIONAL AUTO-ENCODERS

- Variants that also propose an input based target distribution instead of \(\mathcal{N}(0, I) \)

Esser et al., A Variational U-Net for Conditional Appearance and Shape Generation
Kohl et al., A Probabilistic U-Net for Segmentation of Ambiguous Images
CONDITIONAL VARIATIONAL AUTO-ENCODERS

- Can often generate more diverse samples than GANs.

<table>
<thead>
<tr>
<th>GT</th>
<th>pix2pix[12]</th>
<th>our (reconst.)</th>
<th>our (random samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UN-SUPERVISED LEARNING

- For a lot of tasks, it is hard to collect enough training data.
- We saw for the stereo example, how you can have an indirect supervision.
- But in other cases, you have to use transfer learning.
 - Train a network on a large dataset for a related task for which you have ground truth.
 - Remove last layer, and use / finetune feature extractor for new task.
- Researchers are exploring tasks made specifically to transfer from.

UN-SUPERVISED LEARNING

- Pre-train by learning to add color

Larsson, Maire, Shakhnarovich, CVPR 2017.

UN-SUPERVISED LEARNING

- Pre-train by solving jigsaw puzzles

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

Melodi Nreouei and Paolo Favaro

Institute for Informatics
University of Bologna

me@me.eu favaro@unibo.it
UN-SUPERVISED LEARNING

- Pre-train by predicting sound from video

Visually Indicated Sounds

Andrew Owens Philip Isola Josh McDermott Antonio Torralba Edward H. Adelson William T. Freeman

(Examples of sounds from the Greatest Hits dataset. Click each image to play.)

DOMAIN ADAPTATION

- Generate synthetic training data using renderers.
- But networks trained on synthetic data need not generalize to real data.
- (In fact, they may not transfer from high-quality Flickr data to cell-phone camera data)

Problem Setting

- Have input-output training pairs of (x', y) from source domain: renderings/high-quality images/...
- Have only inputs x from target domain: where we actually want to use this.
- Train a network so that features computed from x' and x have the same distribution ...
 i.e., use GANs!

DOMAIN ADAPTATION

- Adversarial Discriminative Domain Adaptation
 - Source images + labels
 - Class label

Adversarial Adaptation

- Source images
- Target images
- Discriminator

Testing

- train image
- CAN
- target image
- class label

DOMAIN ADAPTATION

- Digits adaptation
 - MNIST
 - USPS
 - SVHN

- Cross-modality adaptation (NYUD)
 - RGB
 - IRLA
That's all folks!

- We’ve covered what forms the foundations of state-of-the-art vision algorithms
 - Will help you read, understand, and implement vision papers
- But things are changing rapidly: not just new solutions, but new problems
- So keep reading! (we’ll cover some of this in 659A)

We hope that you have...

- An understanding of the basic math and programming tools to approach vision problems
- Are as surprised as we are that humans and animals are able to solve this so easily

Remaining Time

Ending class early: please use this time to fill out course evaluations.