CSE 559A: Computer Vision

Fall 2020: T-R: 11:30-12:50pm @ Zoom

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Adith Boloor, Patrick Williams

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Dec 3, 2020
LAST TIME

- Talked about “core semantic vision tasks”
Semantic Tasks: Need to be evaluated (and trained) on data
THE EFFECT OF DATA

Semantic Tasks: Need to be evaluated (and trained) on data

Progress: Move from anecdotal to data

The PASCAL Visual Object Classes Challenge 2007
THE EFFECT OF DATA

Semantic Tasks: Need to be evaluated (and trained) on data

- Huge effort to label a large number of images (using Amazon MTurk)
THE EFFECT OF DATA

Semantic Tasks: Need to be evaluated (and trained) on data

- Huge effort to label a large number of images (using Amazon MTurk)
- Labels were from "Word-net" words
- It was thought that having a taxonomy of words would be helpful for visual semantics (turns out not).

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the vehicle subtree. For each synset, 9 randomly sampled images are presented.

Figure 2: Scale of ImageNet. Red curve: Histogram of number of images per synset. About 20% of the synsets have very few images. Over 50% synsets have more than 500 images. Table: Summary of selected subtrees. For complete and up-to-date statistics visit http://www.image-net.org/about-stata. Images spread over 5247 categories (Fig. 2). On average

ImageNet
THE EFFECT OF DATA

Semantic Tasks: Need to be evaluated (and trained) on data

- Huge effort to label a large number of images (using Amazon MTurk)

- Labels were from "Word-net" words

- It was thought that having a taxonomy of words would be helpful for visual semantics (turns out not).

- "Imagenet" Classification Challenge

1000 classes x 1300 images per class
= 1.3 Million Images
THE EFFECT OF DATA

Semantic Tasks: Need to be evaluated (and trained) on data

- Huge effort to label a large number of images (using Amazon MTurk)
- Labels were from "Word-net" words
- It was thought that having a taxonomy of words would be helpful for visual semantics (turns out not).

"Imagenet" Classification Challenge
1000 classes x 1300 images per class = 1.3 Million Images

Changed the nature of ML methods.
THE EFFECT OF DATA

Top-5 error rate on ImageNet

<table>
<thead>
<tr>
<th></th>
<th>ILSVRC 2010</th>
<th>ILSVRC 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Rate</td>
<td>28.2</td>
<td>25.8</td>
</tr>
</tbody>
</table>
THE EFFECT OF DATA

Top-5 error rate on ImageNet

NIPS 2012

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca
THE EFFECT OF DATA

Top-5 error rate on ImageNet

<table>
<thead>
<tr>
<th>Year</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILSVRC 2010</td>
<td>28.2</td>
</tr>
<tr>
<td>ILSVRC 2011</td>
<td>25.8</td>
</tr>
<tr>
<td>ILSVRC 2012</td>
<td>16.4</td>
</tr>
</tbody>
</table>
THE EFFECT OF DATA

Top-5 error rate on ImageNet

All based on convolutional neural networks
THE EFFECT OF DATA

- Older ML Methods designed for small training sets
 - Used more complex optimization methods (than gradient descent): second order methods, etc.
 - Methods had better guarantees if you chose “simpler” classifiers
 - And in practice, gave you better results than neural networks
 - But were quadratic in training set size
- With training set of millions, quadratic-time optimization was not feasible.
- So people first moved to gradient descent, but with the same simple classifiers.
- Found that with additional computation power, if you train with small step size for many iterations (still better than quadratic), gradient descent gives you a reasonable answer.
- But then, since gradient descent was working, the question was why not try more complex classifiers?
- And Krizhevsky and others demonstrated: in this large training set / high training computation budget, deep neural networks are much better!
ARCHITECTURES

Broad Design Principles

- Think of a network that can “express” the operations that you think are needed to solve the problem
 - What kind of a “receptive” field should it have.
 - How non-linear does it need to be.
 - What should be the nature of the flow of information across the image.
- Make sure its a function you can actually learn.
 - Think of the flow of gradients.
 - Try to make other architectures that you know can be successfully trained as a starting point.
- Dealing with Overfitting: One approach:
 - First find the biggest deepest network that will overfit the data
 (Given enough capacity, CNNs will often be able to just memorize the dataset)
 - Then scale it down so that it generalizes.
Let’s consider image classification.

- We will fix our input image to be a specific size.
 - Typically choose square images of size $S \times S$
 - Given image, resize proportionally so that smaller side (height or width) is S
 - Then take an S crop along the other direction
 - (Sometime take multiple crops and average)
- The final output will be a C dimensional vector for C classes.
 - Train using soft-max cross entropy.
 - Classify using arg-max
- Often, you’ll hear about Top-K error.
 - How often is the true class in the top K highest values of predicted C vector.
Let’s talk about VGG-16. Winner of Imagenet 2014.

Reference
Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, “Return of the Devil in the Details: Delving Deep into Convolutional Nets”

Karen Simonyan & Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition.”

Four kinds of layers:

- Convolutional
- Max-pooling
- Fully Connected
- Soft-max
ARCHITECTURES

• Convolutional Layers

Take a spatial input, produce a spatial output.

\[B \times H \times W \times C \Rightarrow B \times H' \times W' \times C' \]

Can also combine with down-sampling.

\[g[b, y, x, c_2] = \sum_{k_y} \sum_{k_x} \sum_{c_1} f[b, y s + k_y, x s + k_x, c_1] k[k_y, k_x, c_1, c_2] \]

Here, \(s \) is stride.

• PSET 5 asks you to implement ‘valid convolution’
• But often combined with padding (just like in regular convolution)
Question: Input activation is \(B \times H \times W \times C_1 \), and I convolve it with a kernel of size \(K \times K \times C_1 \times C_2 \), what is the size of my output? Assume ‘valid’ convolution.

\[
B \times (H - K + 1) \times (W - K + 1) \times C_2
\]

Question: What if I do this with a stride of 2?

Downsample above by 2. Think of what happens when sizes are even or odd.

\[
B \times [(H - K)/2] + 1 \times [(W - K)/2] + 1 \times C_2
\]

In general, you want to pad such that \(H - K \) and \(W - K \) are even, so that you keep the right and bottom edge of your images.
Max-Pooling Layer

\[B \times H \times W \times C \Rightarrow B \times H' \times W' \times C \]

\[g[b, y, x, c] = \max_{k_y, k_x} f[b, y + s + k_y, x + s + k_x, c] \]

For each channel, choose the maximum value in a spatial neighborhood.

- What will the gradients of this look like?
- Motivated by intuition from traditional object recognition (deformable part models). Allows for some ‘slack’ in exact spatial location.
ARCHITECTURES

VGG-16

Input is a 224x224x3 Image

- Block 1
 - 3x3 Conv (Pad 1): 3->64 + RELU (*pad 1 means on all sides, all conv layers have a “bias”)
VGG-16

Input is a 224x224x3 Image

- Block 1
 - 3x3 Conv (Pad 1): 3->64 + RELU
 - 3x3 Conv (Pad 1): 64->64 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 64->64
Input to Block 2 is 112x112x64 (called pool1)

- Block 2
 - 3x3 Conv (Pad 1): 64->128 + RELU
 - 3x3 Conv (Pad 1): 128->128 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 128->128
Input to Block 3 is 56x56x128 (called pool2)

- Block 3
 - 3x3 Conv (Pad 1): 128->256 + RELU
 - 3x3 Conv (Pad 1): 256->256 + RELU
 - 3x3 Conv (Pad 1): 256->256 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 256->256
Input to Block 4 is 28x28x256 (called pool3)

- Block 4
 - 3x3 Conv (Pad 1): 256->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 512->512
Input to Block 5 is 14x14x512 (called pool4)

- Block 5
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 512->512
Output of Block 5 is 7x7x512 (called pool5)
ARCHITECTURES

VGG-16

- Block 5
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 3x3 Conv (Pad 1): 512->512 + RELU
 - 2x2 Max-Pool (Pad 0, Stride 2): 512->512

Output of Block 5 is 7x7x512 (called pool5)

- Reshape to a (49*512=25088) dimensional vector (or B x 25088)

- Fully connected (matmul + bias) 25088 -> 4096 + RELU
- Fully connected (matmul + bias) 4096 -> 4096 + RELU
- Fully connected (matmul + bias) 4096 -> 1000

This is the final output that is trained with a softmax + cross entropy.

- Lots of layers: 138 Million Parameters
- Compared to previous architectures, used really small conv filters.
 - This has now become standard.
 - Two 3x3 layers is “better” than a single 5x5 layer.
 - More non-linear
 - Fewer independent weights
- Train this with backprop!
- Back in the day, would take a week or more.
Remember: Gradient Descent is Fragile

The Effect of Parameterization

\[f(x; \theta) = \theta x \]
\[f'(x; \theta') = 2\theta' x \]

- Two representations of the same hypothesis space.
- Let’s initialize \(\theta' = \theta/2 \). Say \(\theta = 10, \theta' = 5 \).
- Compute loss with respect to the same example.
 - Say \(\nabla_f L = \nabla_{f'} = 1, x = 1 \)
 - What are \(\nabla_\theta \) and \(\nabla_{\theta'} \) ?
- \(\nabla_\theta = 1, \nabla_{\theta'} = 2 \).
- Update with learning rate = 1
- Updated \(\theta = 9, \theta = 3 \)
- \(f(x) = 9x, f'(x) = 6x \)
Initialization

- Because we’re using a first order method, it is important to make sure that the activations of all layers are the same magnitude.
- Because we have RELUs $y = \max(0, x)$, it is important to make sure roughly half the expectations are positive.
- Normalize your inputs to be 0-mean and unit variance.
 - Compute dataset mean and standard deviation, subtract and divide from all inputs.
 - For images, you usually compute the mean over all pixels—so single normalization for all pixels in the input.
 - But different for different color channels.
 - Sometimes, you will want ‘per-location’ normalization.
 - Other times, you will normalize each input by its own pixel mean and standard deviation.
Initialization

- Initialize all biases to 0. Why? Don’t want to shift the mean.
- Now initialize weights randomly so that variance of outputs = variance of inputs = 1.
 - Use approximation $\text{var}(wx) = \text{var}(w) \text{var}(x)$ for scalar w and x.
- Say you have a fully connection layer: $y = W^TX$
 - x is N-dimensional. We assume its 0-mean unit-variance coming in.
 - W is $N \times M$ dimensional.
 - We will initialize W with 0-mean and variance σ^2.
 - What should be the value of σ^2? Take 5 mins.
- $\sigma^2 = 1/N$.
- Now what about a convolution layer with kernel size $K \times K \times C_1 \times C_2$.
 - Initialize kernel with 0-mean and variance σ^2. What should σ^2 be?
- $\sigma^2 = 1/(K^2C_1)$
Initialization

- Actually, using normal distributions is sometimes unstable.
- Probability for values very far from the mean is low, but not 0.
- When you sample millions of weights, you might end up with such a high value!
- Solution: Use truncated distributions that are forced to have 0 probability outside a range.
 - Uniform distribution, “truncated-normal”
 - Figure out what parameters of this distribution should be to have equivalent variance.
Initialization

- But this only ensures zero-mean unit-variance at initialization.
- As your weights update, they can begin to give you biased weights.
- Another option, add normalization in the network itself!

TRAINING IN PRACTICE