GENERAL

- Look at your proposal feedback!
- Problem Set 4 due Tuesday.
- There seems to be a lot of confusion about cost-volumes.
 - Hamming distance is cost not disparity.
 - Many of you made this mistake in problem set 3 as well.
 - Look at solution keys for pset 3!

STORY SO FAR

- Machine Learning
 - Learn input-output relationships from data
 - Algorithm design by trial and error
 - Preferred approach for very ill-posed problems
- Learning by Optimization
 - Select a function from a hypothesis space
 - Typically translates to learning parameters θ for a parametric form $y = f(x; \theta)$
 - Find θ that minimizes loss / error on training set (but be careful of overfitting)
 - In simple cases, closed form solution for θ
 - In the more general case, iterative optimization
- Gradient Descent
 - Compute gradients / partial derivatives of error wrt individual parameters
 - Update parameters by moving in opposite direction
 - Guarantees if loss is a convex function of parameters
 - But can be used generally for arbitrary functional forms and losses
 - Stochastic versions of computational efficiency

Now, let’s look at some of the semantic vision tasks we apply this to.
CORE SEMANTIC TASKS IN VISION

- Image "Classification"
- Object Detection
- Semantic Segmentation

Image Classification: Given an image, classify it as being one of N categories

Scene Type

Aquarium

Art Gallery
CORE SEMANTIC TASKS IN VISION

Image Classification: Given an image, classify it as being one of N categories.

Objects in Scenes

But there might be more than one 'obvious' answer for an image

CORE SEMANTIC TASKS IN VISION

Detection: Check if an object exists in an image, and if so, draw a box around it.

Output: List of \([x_{1},y_{1},x_{2},y_{2}]\) co-ordinates + class labels.

But a box is too coarse ...

CORE SEMANTIC TASKS IN VISION

Detection: Check if an object exists in an image, and if so, draw a box around it.

CORE SEMANTIC TASKS IN VISION

Semantic Segmentation: Label the class of each pixel.
CORE SEMANTIC TASKS IN VISION

Semantic Segmentation: Label the class of each pixel.

Instance Segmentation: Separate pixels of the same class into instances

Human Pose Estimation

Generally, detect parts or keypoints of objects.

Face Recognition

Determine identity by matching input image to individual in database.

N-way classification
N = no of people in the database

Face / Person Re-identification

Determine that two images are of the same person
CORE SEMANTIC TASKS IN VISION

Recognize Expressions from Faces

CORE SEMANTIC TASKS IN VISION

Action / Activity Recognition from Videos

CORE SEMANTIC TASKS IN VISION

New Semantic Tasks: Many at the Intersection of Vision and Language

Image Captioning (from COCO challenge)

CORE SEMANTIC TASKS IN VISION

New Semantic Tasks: Many at the Intersection of Vision and Language

Visual Question Answering (visualqa.org)
CORE SEMANTIC TASKS IN VISION

Semantic Tasks: Need to be evaluated (and trained) on data

Progress: Move from anecdotal to data

The PASCAL Visual Object Classes Challenge 2007

- Huge effort to label a large number of images (using Amazon MTurk)
- Labels were from "Word-net" words
- It was thought that having a taxonomy of words would be helpful for visual semantics (turns out not).
- "Imagenet" Classification Challenge

1000 classes x 1300 images per class = 1.3 Million Images

Changed the nature of ML methods.

Core Semantic Tasks in Vision

Top-5 error rate on ImageNet

NIPS 2012

ImageNet Classification

Alex Krizhevsky
University of Toronto

Ruslan Salakhutar
University of Toronto

Geoffrey E. Hinton
University of Toronto
THE EFFECT OF DATA

- Older ML Methods designed for small training sets
 - Used more complex optimization methods (than gradient descent): second order methods, etc.
 - Methods had better guarantees if you chose "simpler" classifiers
 - And in practice, gave you better results than neural networks
 - But were quadratic in training set size
- With training set of millions, quadratic-time optimization was not feasible.
- So people first moved to gradient descent, but with the same simple classifiers.
- Found that with additional computation power, if you train with small step size for many iterations (still better than quadratic), gradient descent gives you a reasonable answer.
- But then, since gradient descent was working, the question was why not try more complex classifiers?
- And Krizhevsky and others demonstrated: in this large training set / high training computation budget, deep neural networks are much better!

ARCHITECTURES

Broad Design Principles

- Think of a network that can "express" the operations that you think are needed to solve the problem
 - What kind of a "receptive" field should it have.
 - How non-linear does it need to be.
 - What should be the nature of the flow of information across the image.
- Make sure its a function you can actually learn.
 - Think of the flow of gradients.
 - Try to make other architectures that you know can be successfully trained as a starting point.
- Dealing with Overfitting: One approach:
 - First find the biggest deepest network that will overfit the data
 (Given enough capacity, CNNs will often be able to just memorize the dataset)
 - Then scale it down so that it generalizes.
Let's consider image classification.

- We will fix our input image to be a specific size.
 - Typically choose square images of size $S \times S$
 - Given image, resize proportionally so that smaller side (height or width) is S
- Then take an S crop along the other direction
- (Sometime take multiple crops and average)
- The final output will be a C dimensional vector for C classes.
 - Train using soft-max cross entropy.
 - Classify using arg-max
 - Often, you’ll hear about Top-K error.
 - How often is the true class in the top K highest values of predicted C vector.

Let’s talk about VGG-16. Winner of Imagenet 2014.

Reference
Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, ”Return of the Devil in the Details: Delving Deep into Convolutional Nets”
Karen Simonyan & Andrew Zisserman, ”Very Deep Convolutional Networks for Large-Scale Image Recognition.”

Four kinds of layers:
- Convolutional
- Max-pooling
- Fully Connected
- Soft-max

Convolutional Layers
Take a spatial input, produce a spatial output.
$$B \times H \times W \times C \Rightarrow B \times H' \times W' \times C'$$

Can also combine with down-sampling.
$$g[b, y, x, c_2] = \sum_{k_y} \sum_{k_x} \sum_{c_1} f[b, y s + k_y, x s + k_x, c_1] k[k_y, k_x, c_1, c_2]$$

Here, s is stride.

- PSET 5 asks you to implement ‘valid convolution’
- But often combined with padding (just like in regular convolution)

Question: Input activation is $B \times H \times W \times C_1$, and I convolve it with a kernel of size $K \times K \times C_1 \times C_2$, what is the size of my output? Assume ‘valid’ convolution.
$$B \times (H - K) \times (W - K) \times C_2$$

Question: What if I do this with a stride of 2?
Downsample above by 2. Think of what happens when sizes are even or odd.
$$B \times [(H - K)2 + 1] \times [(W - K)2 + 1] \times C_2$$

In general, you want to pad such that $H - K$ and $W - K$ are even, so that you keep the right and bottom edge of your images.
Max-Pooling Layer

\[
B \times H \times W \times C \Rightarrow B \times H' \times W' \times C
\]

For each channel, choose the maximum value in a spatial neighborhood.

- What will the gradients of this look like?
- Motivated by intuition from traditional object recognition (deformable part models). Allows for some ‘slack’ in exact spatial location.

\[
g[b, y, x, c] = \max_{k_y, k_x} f[b, y, s + k_y, x, s + k_x, c]
\]