GENERAL

- Proposal feedback out.
 - Do a git pull on your proposal repository.
 - Look at it NOW!
- Problem set 3 keys also out (do a pull to look at them).

GRADIENT DESCENT

- Last Time: We talked about gradient descent as a way of optimizing cost functions that weren't simple linear least squares.
- Specifically, for the case of logistic regression (sigmoid-based f and a cross-entropy loss).

$$
\nabla_w C(w) = \begin{bmatrix}
\frac{\partial}{\partial w_1} C(w) \\
\frac{\partial}{\partial w_2} C(w) \\
\vdots
\end{bmatrix}
$$

If $C(w) = \frac{1}{T} \sum_t C_t(w)$, then

$$
\nabla_w C(w) = \frac{1}{T} \sum_t \nabla_w C_t(w)
$$

Logistic Regression

$$
C_t(w) = y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)]
$$

What is $\nabla_w C_t(w)$, the gradient of the loss from a single training example?
\[C_t(w) = y_i \log[1 + \exp(-w^T \hat{x}_i)] + (1 - y_i) \log[1 + \exp(w^T \hat{x}_i)] \]

Ok, what is the derivative of
\[C_t(p) = y_i \log[1 + \exp(-p)] + (1 - y_i) \log[1 + \exp(p)] \]
with respect to \(p \) (where \(p \) is a scalar).

Take 5 mins!

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_i \]

\[\frac{\partial}{\partial p} C_t(p) = y_i \frac{-\exp(-p)}{1 + \exp(-p)} + (1 - y_i) \frac{\exp(p)}{1 + \exp(p)} \]

\[= \frac{\exp(p)}{1 + \exp(p)} - y_i \left[\frac{\exp(-p)}{1 + \exp(-p)} + \frac{\exp(p)}{1 + \exp(p)} \right] \]

\[= \frac{\exp(p)}{1 + \exp(p)} - y_i \left[\frac{1}{1 + \exp(-p)} + \frac{\exp(p)}{1 + \exp(p)} \right] \]

Also, changing \(p \) makes a much bigger difference in the corresponding probability, when \(p \) is near 0 / probability near 0.5.
GRADIENT DESCENT

\[C_t(w) = y_i \log [1 + \exp(-w^T \hat{x}_i)] + (1 - y_i) \log [1 + \exp(w^T \hat{x}_i)] \]

\[C_t(p) = y_i \log [1 + \exp(-p)] + (1 - y_i) \log [1 + \exp(p)] \]

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_i \]

But this is still derivative with respect to \(p \). We want gradient with respect to \(w \).

\[\frac{\partial}{\partial w} C_t(w) =? \times \left[\frac{\exp(w^T \hat{x}_i)}{1 + \exp(w^T \hat{x}_i)} - y_i \right] \]

GRADIENT DESCENT

\[C_t(w) = y_i \log [1 + \exp(-w^T \hat{x}_i)] + (1 - y_i) \log [1 + \exp(w^T \hat{x}_i)] \]

\[C_t(p) = y_i \log [1 + \exp(-p)] + (1 - y_i) \log [1 + \exp(p)] \]

\[\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p)}{1 + \exp(p)} - y_i \]

But this is still derivative with respect to \(p \). We want gradient with respect to \(w \).

\[\frac{\partial}{\partial w} C_t(w) = \hat{y}_i \times \left[\frac{\exp(w^T \hat{x}_i)}{1 + \exp(w^T \hat{x}_i)} - y_i \right] \]

\[\nabla_w C_t(w) =? \]

GRADIENT DESCENT

\[w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \hat{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \hat{x}_t)] \]

Putting it together:

- At each iteration \(i \),
 - Based on current \(w \), compute \(f(x_t, w) = \hat{y}_t \)
 - Compute derivative of the "output" as \(\hat{y}_t - y_t \)
 - Multiply by \(x_t \) to get \(\nabla_w \)
 - Change \(w \) by subtracting some \(\gamma \) times this gradient.
GRADIENT DESCENT

\[w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \hat{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \hat{x}_t)] \]

Putting it together:

- At each iteration \(i \),
 - Based on current \(w \), compute \(f(x_i, w) = \hat{y}_i \) for every training sample
 - Compute derivative of the “output” as \(\hat{y}_i - y_i \) for every training sample
 - Multiply by \(x_i \) and average all training samples to get \(\nabla w \)
 - Change \(w \) by subtracting some \(\gamma \) times this gradient.

\[C(w) = \frac{1}{T} \sum_t C_t(w) \Rightarrow \nabla_w C = \frac{1}{T} \sum_t \nabla_w C_t \]

Expensive when we have a LOT of training data.

STOCHASTIC GRADIENT DESCENT

\[w = \arg \min_w \frac{1}{T} \sum_{t} C(x_t, y_t; w) \]

\[\nabla_w = \frac{1}{T} \sum_{t} \nabla_w C(x_t, y_t; w) \]

Remember, summation over training samples meant to approximate an expectation over \(P_{XY} (x, y) \).

\[\frac{1}{T} \sum_{t} C(x_t, y_t; w) \rightarrow E_{P_{XY}(x,y)} C(x,y;w) \]

\[\frac{1}{T} \sum_{t} \nabla_w C(x_t, y_t; w) \rightarrow E_{P_{XY}(x,y)} \nabla_w C(x,y;w) \]

In other words, we are approximating the “true” gradient with gradients over samples.

What if we used a smaller number of samples in each iteration, but different samples in different iterations?

STOCHASTIC GRADIENT DESCENT

- Single sample
 \[w_{i+1} \leftarrow w_i - \gamma \nabla_w C_t(x_t, y_t; w_i) \]

 At each iteration, choose a random \(t \in \{1, 2, \ldots, T\} \).

- “Mini”-batched SGD (sometimes GD is called Batched GD)
 \[w_{i+1} \leftarrow w_i - \gamma \nabla_w C_t(x_t, y_t; w_i) \frac{1}{B} \sum_{t \in B} C_t(x_t, y_t; w_i) \]

 At each iteration, choose a random smaller batch \(B \) of size \(B \ll T \).

With replacement? Without replacement?

In practice:

- Shuffle order of training examples
- Choose a batch size
- Take consecutive groups of \(B \) samples as you loop through iterations
 - \([1,8]\) in iteration 1
 - \([B+1,2B]\) in iteration 2
 - …
- Once you reach the end of the training set (called one “epoch”), shuffle the order again.
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

- The gradient over a mini-batch is an "approximation", or a "noisy" version of the gradient over the true training set.
 \[\frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) = \frac{1}{T} \sum_{t=1}^{T} \nabla_w C_t(x_t, y_t; w_i) + \epsilon \]

- Typically, if you decrease the batch-size, you will want to decrease your step size (because you are "less sure" about the gradient).

STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

- Say your cost function is convex, and you care only about decreasing this cost (not worried about overfitting)
 - Larger batch size will always give you "better" gradients.
 - But diminishing returns after a batch size.
 - Computational cost is number of examples per iteration \(\times \) number of iterations for convergence
 - Higher batch means more computation per iteration, but may mean fewer iterations required to converge.
 - Best combination of step size and batch size is an empirical question.
 - Another factor: parallelism.
 - Note that you can compute the gradient of all samples of your batch in parallel.
 - Ideally, you want to at least "satrate" all available parallel threads.

STOCHASTIC GRADIENT DESCENT

Momentum

Standard SGD:

\[g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

With Momentum:

For \(\beta < 1 \):

\[g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) + \beta g_i \]

\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

- Keep adding the gradient from a previous batch, again and again across iterations, with decaying weight.
- Remember: \(g_i \) was computed with respect to a different position in \(w \) space.
- People often use \(\beta \) as high as 0.9 or 0.99.
- Will need to revisit "best" value of \(\gamma \) when you change \(\beta \).
Multi-Class Cross Entropy Loss

\[L(y, f(x)) = L(y, [p_1, p_2, \ldots]^T) = -\log p_y \]

Another way to write it:

- \(y^1 = [\delta_1, \delta_2, \ldots] \), where \(\delta_i = 1 \) if \(y = i \) and 0 otherwise.
- Called a 1-Hot encoding of the class.
- \(y^1 \) also represents a "probability distribution", where the right class has probability 1.
- In some cases, if you have uncertainty in your training data, \(y^1 \) could be a distribution too.

\[L(y^1, [p_1, p_2, \ldots]^T) = -\sum_i \delta_i \log p_i \]

Multi-Class Classification

\[f(x; W) = \text{SoftMax}(W^T \hat{x}) = [p_1, p_2, p_3, \ldots p_C]^T \]

\[[p_1, p_2, \ldots]^T = \text{SoftMax}([l_1, l_2, \ldots]^T) \rightarrow p_i = \frac{\exp(l_i)}{\sum_i \exp(l_i)} \]

At Test Time: \(y = \arg \max_i l_i \)

Multi-Class Classification

Want to map an input \(x \) to a class label \(y \in \{1, 2, 3, \ldots C\} \)

- Binary case: \(f \) outputs a single number between 0,1 that represents \(P(y = 1) \).
- Multi-class case: \(f \) outputs a \(C \) dimensional vector that represents a probability distribution over \(C \) classes.

\[f(x; W) = \text{SoftMax}(W^T \hat{x}) = [p_1, p_2, p_3, \ldots p_C]^T \]

Here our learnable parameter is now the \(N \times C \) matrix \(W \) (\(N \) is length of feature vector \(\hat{x} \)).

- \(p_i \) represents the probability of class \(i \)
- Each \(p_i > 0 \), and \(\sum p_i = 1 \)
- \(\text{SoftMax} \) is a generalization of \(\text{Sigmoid} \)

\[\frac{[p_1, p_2, \ldots]^T}{\rightarrow} \text{SoftMax}([l_1, l_2, \ldots]^T) \rightarrow p_i = \frac{\exp(l_i)}{\sum_i \exp(l_i)} \]

We’re going to use gradient descent to learn \(W \). What is \(\nabla_W L \)?

- First, what is \(\frac{\partial L}{\partial W} \)? Take 5 mins.
- Derivative is \(p_i - \delta_i \)
 - This means that you’ll get gradients for all classes (not just the true class)
 - Negative gradient wants you to increase probability for right class, and decrease for other classes
- What is \(\nabla_W L \)? Take a few minutes!

\[\nabla_W L = \hat{x} \cdot [p_1 - \delta_1, p_2 - \delta_2, \ldots] \]

This is a matrix multiply or outer-product of an \(N \times 1 \) vector with a \(1 \times C \) vector.

Multi-Class Classification

\[w = \arg \min_w \frac{1}{T} \sum_t C_t(w) \]

\[C_t(w) = y_t \log [1 + \exp(-w^T \hat{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \hat{x}_t)] \]

- Defined linear classifier on augmented vector \(\hat{x} \)
- Used gradient descent to learn \(w \).
 - Looked at behavior of gradients.
 - Simplified computation with stochasticity.
- At test time, sign of \(w^T \hat{x} \) gives us our label.

This is for binary classification. What about the multi-class case? \(y \in \{1, 2, 3, \ldots C\} \)
For regression and both binary and multi-class classification:
- Defined linear classifier on augmented vector \tilde{x}
- Run optimization to learn parameters

The problem is:
- The definition of augmented vector \tilde{x} is hand-crafted
- We have manually engineered our features.
- The only thing we're learning is a linear classifier on top.

Want to learn the features themselves!

Given that SGD works, what's stopping us from learning a function g such that $g(x) = \tilde{x}$?