CSE 559A: Computer Vision

Fall 2018: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Zhihao Xia, Charlie Wu, Han Liu

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Aug 30, 2018
• **EVERYONE** needs to fill out survey.

• Setup git and Anaconda, send us your public key, and do problem set 0.
 - Do immediately: submit public key and make sure you can clone repo.

• If you have trouble with git/Python/LaTeX setup:
 - Attend Zhihao's office hours tomorrow: 10:30 AM-Noon @ Jolley 309

• This monday is labor day: no office hours!
 - Monday location still TBD
• \(E(x, y, t) \): Light energy, *per unit area per unit time*, arriving at point \((x, y)\) at time \(t\)
 - Here, \(x, y\) are real numbers (in meters) denoting actual position on the sensor plane.

• \(I[n_x, n_y] \): Intensity measured by the sensor element at grid location \(n_x, n_y\)
 - Here, \(n_x, n_y\) are integers, indexing pixel location.

• \(p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \): is a sensitivity function
 - \(\bar{x}_{n_x}, \bar{y}_{n_y}\) is the location (in meters) of the center of the sensor element
 - \(p(\cdot, \cdot)\) is ideally 1 inside pixel, 0 outside. But may have attenuation at boundaries.

• Defining \(q\) as the "quantum efficiency" of the sensor: Ratio of Light Energy to Charge/Voltage
 - \[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \]
 Rate at which charge/voltage increases in sensor element \(n_x, n_y\) at time \(t\).
\[I[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \right] dt \]

- \(n_x, n_y \) are integers indexing pixels in image array.
- \((x, y)\) is spatial location
- \(I[n_x, n_y] \) is recorded pixel intensity.
- \(E(x, y, t) \) is light "power" per unit area incident at location \((x, y)\) on the sensor plane at time \(t \)
- \((\bar{x}_{n_x}, \bar{y}_{n_y})\) is the "center" spatial location of the pixel / sensor element at \([n_x, n_y]\).
- \(p(x, y) \) is spatial sensitivity of the sensor (might be lower near boundaries, etc.)
- \(q \) is quantum efficiency of the sensor (photons/energy to charge/voltage)
- \(T \) is the duration of the exposure interval.

CCD/CMOS sensors measure total energy or "count photons" that arrived during exposure.
\[I[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \right] \ dt \]

\(I[n_x, n_y] \) is the ideal unquantized pixel intensity
SHOT NOISE

- Caused by uncertainty in photon arrival
- Actual number of photons K is a discrete random variable with Poisson distribution

 $P(K = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

 λ is the "expected" number of photons. In our case, $\lambda \propto I^0$

- Property of Poisson distribution: Mean and Variance both equal to λ
- Often, shot noise is modeled with additive Gaussian noise with signal dependent variance:

 $$I \leftarrow I^0 + \sqrt{I^0} \epsilon_1$$

where $\epsilon \sim \mathcal{N}(0, 1)$ (Gaussian random noise with mean 0, variance 1).

$$\sqrt{I^0} \epsilon_1 \sim \mathcal{N}(0, I^0)$$
Sensor

$$I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \right] \ dt$$

$$I \leftarrow I^0 + \sqrt{I^0} \ \epsilon_1$$

Amplification & Additive Noise

- Signal amplified by gain g before digitization. Based on ISO (higher g for higher ISO).
- Some signal-independent Gaussian noise added before and after amplification.

$$I \leftarrow g \times (I^0 + \sqrt{I^0} \ \epsilon_1 + \sigma_{2a} \epsilon_{2a} + \sigma_{2b} \epsilon_{2b})$$

where σ_{2a} and σ_{2b} are parameters (lower for high quality sensors), and $\epsilon_1, \epsilon_{2a}, \epsilon_{2b}$ are $\mathcal{N}(0, 1)$ noise variables, all independent.

$$I \leftarrow \underbrace{gI^0}_{\text{Amplified Signal}} + \underbrace{g \sqrt{I^0} \ \epsilon_1}_{\text{Amplified Shot Noise}} + \underbrace{\sqrt{(g^2 \sigma_{2a}^2 + \sigma_{2b}^2)} \ \epsilon_2}_{\text{Amplified and un-amplified additive noise}}$$
$I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \right] dt$

$$I \leftarrow gI^0 + g\sqrt{I^0} \ e_1 + \sqrt{(g^2 \sigma_{2a}^2 + \sigma_{2b}^2)} \ e_2$$

DIGITIZATION

- Final step is rounding and clipping (by an analog to digital converter)

$$I \leftarrow \text{Round} \left(gI^0 + g\sqrt{I^0} \ e_1 + \sqrt{(g^2 \sigma_{2a}^2 + \sigma_{2b}^2)} \ e_2 \right)$$

$$I = \min \left(I_{\text{max}}, \ \text{Round} \left(gI^0 + g\sqrt{I^0} \ e_1 + \sqrt{(g^2 \sigma_{2a}^2 + \sigma_{2b}^2)} \ e_2 \right) \right)$$
\[
I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) \ p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \ q \ dx \ dy \right] \ dt
\]

\[
I = \min \left(I_{\text{max}}, \ \text{Round} \left(gI^0 + g\sqrt{I^0} \ e_1 + \sqrt{\left(g^2 \sigma_{2a}^2 + \sigma_{2b}^2 \right)} \ e_2 \right) \right)
\]

ignoring sensor saturation, dark current, ...

WHY STUDY THIS?

- To understand the degradation process of noise (if we want to denoise / recover \(I^0 \) from \(I \)).
- To prevent degradation during capture, because we control exposure time \(T \) and ISO / gain \(g \).
- To understand the different trade-offs for loss of information from noise, rounding, and clipping.
Ignoring noise, what is the optimal g for a given $I_0^0[n_x, n_y]$?

- Keep g low so that most values of $gI_0^0[n_x, n_y]$ are below I_{max}.
- But if g is too low, a lot of the variation will get rounded to the same value.
Increasing g

Data from Sam Hasinoff
\[I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) p(x - \bar{x}_n, y - \bar{y}_n) q \, dx \, dy \right] dt \]

\[I = \min \left(I_{\text{max}}, \text{Round} \left(gI^0 + g\sqrt{I^0} \, e_1 + \sqrt{g^2 \sigma_{2a}^2 + \sigma_{2b}^2} \, e_2 \right) \right) \]

Note that here, our 'ideal' intensity is \(gI^0 \), everything else is noise.

LIGHT VS AMPLIFICATION

Say we have chosen the optimal target values for the product \(gI^0 \). Is it better:

- To have a higher \(g \) and lower magnitude \(I^0 \)
- To have a lower \(g \) and higher magnitude \(I^0 \)
- Depends, based on \(\sigma_{2a}, \sigma_{2b} \)

Additional Reading (if interested):
So how do we increase I^0?

- Better sensors (higher q)
- Larger sensor elements: $p(\cdot, \cdot) > 0$ over a larger area.

But we've gone the other way: cameras stuff more 'megapixels' in smaller form factors.
Increase exposure time T?

- If scene is static and camera is stationary:
 - $E(x, y, t)$ doesn't change with $t \Rightarrow I^0 \propto T$
- If scene is moving ...

$$I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) q \, dx \, dy \right] dt$$
Increase $E(x, y, t)$ itself. How?

- Take pictures outdoors, or under brighter lights.
- Don't use a pinhole camera!

\[
I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(x, y, t) p(x - \bar{x}_n, y - \bar{y}_n) q \, dx \, dy \right] dt
\]
Small Pinhole: Focused beam, very little light.
Large Pinhole: More light, larger 'circle of confusion'
Solution: Put a lens to focus
Thin lens model (approximation)

More light & localization of rays to sensor plane but only for objects at the focusing distance D.

\[
\frac{1}{D} + \frac{1}{f} = \frac{1}{\frac{f}{D}}
\]

Focal length of Lens
Distance of Sensor to Aperture
Again, point projects to 'circle of confusion'
Circle of Confusion still Proportional to Aperture Size

Can still tradeoff amount of light with amount of blur in out of focus regions (move up or down "f-stops")
Better trade-off than pinhole camera
TRADEOFFS

Photographers think about these tradeoffs every time they take a shot

- Dynamic range and what part of the image should be well exposed (rounding and clipping)

- Choosing between:
 - ISO i.e. Gain & noise
 - Exposure Time & motion blur
 - F-stop i.e. aperture size & defocus blur
We left out at an important term in this equation: wavelength
COLOR

\[I^0[n_x, n_y] = \int_{t=0}^{T} \left[\int E(\lambda, x, y, t) p(x - \bar{x}_n, y - \bar{y}_n) q(\lambda) d\lambda \ dx \ dy \right] dt \]

- Light carries different amounts of power in different wavelengths
- \(E(\lambda, x, y, t) \) now refers to power per unit area per unit wavelength
 - In wavelength \(\lambda \), incident at \((x, y)\) at time \(t \)
 - Both spectral and spatial density function
- \(q(\lambda) \): Quantum efficiency also a function of wavelength
 - CMOS/CCD sensors are sensitive (have high \(q \)) across most of the visible spectrum
 - Actually extend to longer than visible wavelengths (near infra red)
 - Why cameras have NIR filter, to prevent NIR radiation from being 'superimposed' on the image

Q: But this measures 'total' power in all wavelengths. How do we measure color?

Ans: By putting a color filter in front of each sensor element.
COLOR

\[I^0[n_x, n_y, c] = \int_{t=0}^{T} \left[\int E(\lambda, x, y, t) p(x - \bar{x}_{n_x}, y - \bar{y}_{n_y}) \Pi_c(\lambda) q(\lambda) \, d\lambda \, dx \, dy \right] \, dt \]

for \(c \in \{R, G, B\} \)

- \(\Pi_c \) is the transmittance of a color filter for color channel \(c \)
- E.g., \(\Pi_R \) will transmit power in (be high for) wavelengths in the red part of the visible spectrum and attenuate power in (be low for) other wavelengths.
- Sometimes also called "color matching functions"
But we can only put one filter in front of each sensor element / pixel location. So color cameras "multiplex" color measurements: they measure a different color channel at each location. Usually in an alternating pattern called the Bayer pattern:

Note: a disadvantage is that color filters block light, so measured I^0 values are lower. That's why black and white / grayscale cameras are "faster" than color cameras.
Final steps in camera processing pipelines (except for some DSLR cameras shooting in RAW):

- Filter Colors to Standard RGB:
 - Cameras often use their own color filters Π_c.
 - Apply a linear transformation to map those measurements to standard RGB.
- White-balance: scale color channels to remove color cast from a non-neutral illuminant.
- Tone-mapping:
 - The simplest form is "gamma correction" (approximately raising each intensity to the power $(1/2.2)$)
 - Done based on standard developed for what old display devices expected
 - Fits the full set of measurable colors into the gamut that can be displayed / printed
 - Modern cameras often do more advanced processing (to make colors look vibrant)
- Compression

And that's how you get your PNG / JPEG images!

Optional Additional Reading: Szeliski Sec 2.3
Other effects we did not talk about. E.g.,

- Real Lenses not thin lenses and have distortions:
 - Radial Distortion
 - Vignetting
 - Chromatic Aberration
OTHER EFFECTS

Other effects we did not talk about. E.g.,

Rolling Shutter: No explicit shutter but when pixels reset electronically (along scanlines)
NON-STANDARD CAMERAS

Place array of micro-lenses in front of sensor
Different pixels observe the scene "from a different angle"
Let you estimate depth, shift viewpoint post-capture,
refocus post-capture
16 Different Camera Units
Fuse images to get lower noise, higher dynamic range, synthetically control focal distance and aperture size post-capture

No lens: lets the camera be much smaller, sensor can be placed on curved surfaces. Put a mask in the aperture: causes 'patterns' of confusion instead of circles of confusion. Create focused image computationally.
NON-STANDARD CAMERAS

Coded Aperture Photography

Coded Aperture Photography

NON-STANDARD CAMERAS

Synthetic Focus Post-capture

Coded Aperture Photography

Unbounded High Dynamic Range Photography using a Modulo Camera

Hang Zhao1 Boxin Shi1,3 Christy Fernandez-Cull2 Sai-Kit Yeung2 Ramesh Raskar1

1 MIT Media Lab 2MIT Lincoln Lab 3SUTD

ICCP 2015, Houston, TX \textbf{[Best Paper runner-up]}

Intensity camera

Modulo camera

Recovered

Intensity camera

Modulo camera

Single-capture HDR

Multi-capture HDR: 8 bits + 8 bits = 16 bits
IMAGES

- Exist as 2-D (grayscale) or 3-D (color image) arrays

- Precision: uint8 (0-255), uint16(0-65535), Floating point (0-1)
 - We will often treat them as (positive) real numbers.

- Conventions:
 - $I[n_x, n_y] \in \mathbb{R}$
 - $I[n_x, n_y, c] \in \mathbb{R}$
 - $I[n_x, n_y] \in \mathbb{R}^3$
 - $I[n] \in \mathbb{R}$ or \mathbb{R}^3, where $n \in \mathbb{Z}^2$

- How do you process / manipulate these arrays?
POINT-WISE OPERATIONS

- $Y[n] = h(X[n])$
- $Y[n] = h(X_1[n], X_2[n], \ldots)$
- $Y[n] = h_n(X[n])$ - Might vary based on location.
- $h(\cdot)$ itself might be based on 'global statistics'
POINT-WISE OPERATIONS

$X[n] \in \mathbb{R}^3$

$$Y[n] = \begin{bmatrix} 0.7 & 1.05 & 0.7 \end{bmatrix} X[n]$$

Linear Color Transforms
POINT-WISE OPERATIONS

$X[n] \in \mathbb{R}^3$

$Y[n] = \begin{bmatrix} 0.7 & 0.7 & \end{bmatrix} X[n]$

Linear Color Transforms
POINT-WISE OPERATIONS

\[X[n] \in \mathbb{R}^3 \]

\[Y[n] = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} X[n] \]

Linear Color Transforms
POINT-WISE OPERATIONS

\[X[n] \in \mathbb{R}^3 \]

\[Y[n] = 0.9 \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix} X[n] + 0.1 \begin{bmatrix}
X[n]
\end{bmatrix} \]

Linear Color Transforms
POINT-WISE OPERATIONS

\[
X[n] \in \mathbb{R}^3
\]

Linear Color Transforms

\[
Y[n] = 0.5 \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix} X[n] + 0.5 \begin{bmatrix}
X[n]
\end{bmatrix}
\]
POINT-WISE OPERATIONS

\[X[n] \in \mathbb{R}^3 \]

Linear Color Transforms

\[Y[n] = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} X[n] - 1.0 \]

\[+ 2.0 \ X[n] \]
POINT-WISE OPERATIONS

\[X[n] \in \mathbb{R} \]

\[Y[n] = X[n]^{0.5} \]

Non-linear Transforms
POINT-WISE OPERATIONS

\[X[n] \in \mathbb{R} \]

\[Y[n] = X[n]^{2.0} \]

Non-linear Transforms

Tone-maps / Change contrast
POINT-WISE OPERATIONS

\[Y[n] \]

\[X[n] \]
Can be arbitrary: but usually monotonic

People play around with this a lot manually: but also can be done automatically for some objective
Uneven distribution of intensities (many too dark or too bright)

Find a monotonic function $h(\cdot)$ such that the intensities of $h(X[n])$ are distributed uniformly in the range $[0, 255]$.

Histogram Equalization
Consider the Cumulative Distribution (think of intensity as a continuous r.v.)

Use the CDF as the tone map: \(h(x) = P(X[n] < x) \times 255.0 \)
POINT-WISE OPERATIONS

Not perfect as dealing with quantized values
POINT-WISE OPERATIONS

Image Matting (combine multiple images with alpha matte)

From Szeliski 3.1
Linear operation on spatial neighborhoods

\[Y[n] = \sum_{n'} X[n - n']k[n'] \]

Kernel

\(X[n] \)

\(Y[n] \)

\(k[n] \)
Linear operation on spatial neighborhoods

\[Y[n] = \sum_{n'} X[n - n']k[n'] \]

Kernel
CONVOLUTION