STOCHASTIC GRADIENT DESCENT

$$w_{j+1} \leftarrow w_j - \gamma \frac{1}{B} \sum_{i \in B} \nabla_w C_i(x_i, y_i; w_j)$$

General Notes

Say your cost function is convex, and you care only about decreasing this cost (not worried about overfitting)

- Larger batch size will always give you "better" gradients.
- But diminishing returns after a batch size.
- Computational cost is number of examples per iteration \(\times \) number of iterations for convergence
 - Higher batch means more computation per iteration, but may mean fewer iterations required to converge.
- Best combination of step size and batch size is an empirical question.
- Another factor: parallelism.
 - Note that you can compute the gradient of all samples of your batch in parallel.
 - Ideally, you want to at least "saturate" all available parallel threads.

STOCHASTIC GRADIENT DESCENT

$$w_{j+1} \leftarrow w_j - \gamma \frac{1}{B} \sum_{i \in B} \nabla_w C_i(x_i, y_i; w_j)$$

General Notes

If your cost function is NOT convex, and/or you are worried about overfitting.

- Noise in your gradients might be a good thing!
- Might help you escape local minima.
- Might prevent you from overfitting to train set.
- Try different batch sizes, check performance on dev set, not just train set.
STOCHASTIC GRADIENT DESCENT

Momentum

Standard SGD:

\[g_{i+1} = \frac{1}{B} \sum_{b \in B} V_{wb}(x_b, y_b; w_i) \]

\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

With Momentum:

For \(\beta < 1 \):

\[g_{i+1} = \frac{1}{B} \sum_{b \in B} V_{wb}(x_b, y_b; w_i) + \beta g_i \]

\[w_{i+1} \leftarrow w_i - \gamma g_{i+1} \]

- Keep adding the gradient from a previous batch, again and again across iterations, with decaying weight.
- Remember: \(g_i \) was computed with respect to a different position in \(w \) space.
- People often use \(\beta \) as high as 0.9 or 0.99.
- Will need to revisit "best" value of \(\gamma \) when you change \(\beta \).

Multi-Class Classification

- Want to map an input \(x \) to a class label \(y \in \{1, 2, 3, \ldots, C\} \)
- Binary case: \(f \) outputs a single number between 0,1 that represents \(P(y = 1) \).
- Multi-class case: \(f \) outputs a \(C \) dimensional vector that represents a probability distribution over \(C \) classes.

\[f(x; W) = \text{SoftMax}(W^T \hat{x}) = [p_1, p_2, p_3, \ldots, p_C]^T \]

- Here our learnable parameter is now the \(N \times C \) matrix \(W \) (\(N \) is length of feature vector \(\hat{x} \)).
- \(p_i \) represents the probability of class \(i \)
- Each \(p_i > 0 \), and \(\sum p_i = 1 \)
- SoftMax is a generalization of Sigmoid

\[[p_1, p_2, \ldots]^T = \text{SoftMax}([l_1, l_2, \ldots]^T) \rightarrow p_i = \frac{\exp(l_i)}{\sum \exp(l_i)} \]

- At Test Time: \(y = \arg \max_p, p_i \)
- \(y = \arg \max_i l_i \)

MACHINE LEARNING

\[w = \arg \min_w \frac{1}{T} \sum_{t} C_t(w) \]

\[C_t(w) = y_t \log[1 + \exp(-w^T \hat{x}_t)] + (1 - y_t) \log[1 + \exp(w^T \hat{x}_t)] \]

- Defined linear classifier on augmented vector \(\hat{x} \)
- Used gradient descent to learn \(w \).
- Looked at behavior of gradients.
- Simplified computation with stochasticity.
- At test time, sign of \(w^T \hat{x} \) gives us our label.

This is for binary classification. What about the multi-class case? \(y \in \{1, 2, 3, \ldots, C\} \)

Multi-Class Cross Entropy Loss

\[L(y, f(x)) = L(y, [p_1, p_2, \ldots]^T) = -\log p_y \]

- Another way to write it:
 - \(y^1 = [\delta_1, \delta_2, \ldots] \), where \(\delta_i = 1 \) if \(y = i \) and 0 otherwise.
 - Called a 1-Hot encoding of the class
 - \(y^1 \) also represents a "probability distribution", where the right class has probability 1.
 - In some cases, if you have uncertainty in your training data, \(y^1 \) could be a distribution too.

\[L(y^1 = [\delta_1, \delta_2, \ldots, [p_1, p_2, \ldots]^T) = -\sum_i \delta_i \log p_i \]
Multi-Class Classification

\[
[l_1, l_2, \ldots]^T = W^T \tilde{x}
\]

\[
p_i = \frac{\exp(l_i)}{\sum_l \exp(l_l)}
\]

\[
L([\delta_1, \delta_2, \ldots], [p_1, p_2, \ldots]^T) = -\sum_l \delta_l \log p_i
\]

- We’re going to use gradient descent to learn \(W \). What is \(V_w L \)?
- First, what is \(\frac{\partial}{\partial x} \)? Take 5 mins.
- Derivative is \(p_i - \delta_i \)
 - This means that you’ll get gradients for all classes (not just the true class)
 - Negative gradient wants you to increase probability for right class, and decrease for other classes
- What is \(V_w L \)? Take a few minutes!

\[
V_w L = \tilde{x} [p_1 - \delta_1, p_2 - \delta_2, \ldots]
\]

This is a matrix multiply or outer-product of an \(N \times 1 \) vector with an \(1 \times C \) vector.

Classification

\[
\begin{align*}
\hat{x} & \quad \text{Encode} \quad \tilde{x} \quad \text{Learn} \quad w \quad \text{Classify} \quad > 0 \quad \text{True} \\
\text{Hand crafted} & \quad \text{Automatic} \quad \text{Data driven}
\end{align*}
\]

- What is an encoding such that a ‘linear’ classifier on it will suffice?
- Just list of pixels / quadratic (now \(N^2 \) dimensional vector)?
- Kernel methods help with dimensionality, but still hand-crafted.

\[
w = \arg \min_w \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)]
\]

\[
\theta, w = \arg \min_{\theta, w} \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T g(x_t; \theta))] + (1 - y_t) \log [1 + \exp(w^T g(x_t; \theta))]
\]

Classification

- For regression and both binary and multi-class classification:
 - Defined linear classifier on augmented vector \(\tilde{x} \)
 - Run optimization to learn parameters
- The problem is:
 - The definition of augmented vector is hand-crafted
 - We have manually engineered our features.
 - The only thing we’re learning is a linear classifier on top.
- Want to learn the features themselves!

Given that SGD works, what’s stopping us from learning a function \(g \) such that \(g(x) = \tilde{x} \)?
Classification

- Learn $\bar{x} = g(x; \theta)$

$$w = \arg\min_w \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T \bar{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \bar{x}_t)]$$

$$\theta, w = \arg\min_{\theta, w} \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T g(x_t; \theta))] + (1 - y_t) \log [1 + \exp(w^T g(x_t; \theta))]$$

- Again, use (stochastic) gradient descent.
 - But this time, the cost is no longer convex.
 - Turns out .. doesn’t matter (sort of).

Recall in the previous case: (where C_t is the cost of one sample)

$$\nabla_\theta C_t = \bar{x}_t \left[\frac{\exp(w^T \bar{x}_t)}{1 + \exp(w^T \bar{x}_t)} - y_t \right]$$

What about now?

Exactly the same, with $\bar{x} = g(x; \theta)$ for the current value of θ.

Classification

The Multi-Layer Perceptron

- Learn $\bar{x} = g(x; \theta)$

$$\theta, w = \arg\min_{\theta, w} \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T g(x_t; \theta))] + (1 - y_t) \log [1 + \exp(w^T g(x_t; \theta))]$$

$$\nabla_\theta C_t = \bar{x}_t \left[\frac{\exp(w^T \bar{x}_t)}{1 + \exp(w^T \bar{x}_t)} - y_t \right]$$

What about $\nabla_\theta C_t$?

First, what is the $\nabla_\theta C_t$?

$$\nabla_\theta C_t = \bar{x}_t \left[\frac{\exp(w^T \bar{x}_t)}{1 + \exp(w^T \bar{x}_t)} - y_t \right]$$

- \bar{x} is an "element-wise" non-linearity.
 - For example $\bar{x}(x) = \sigma(x)$. More on this later.
 - Has no learnable parameters.
- σ is our sigmoid to convert log-odds to probability.

$$\sigma(y) = \frac{\exp(y)}{1 + \exp(y)}$$

- Multiplication by θ and action of \bar{x} is a "layer".
 - Called a "hidden" layer, because you’re learning a "latent representation".
 - Don’t have direct access to the true value of its outputs. Learning a representation that jointly with a learned classifier is optimal
The Multi-Layer Perceptron

\[x \rightarrow \theta x \rightarrow h \rightarrow w h \rightarrow y \rightarrow \sigma(y) \rightarrow p \]

- This is a neural network:
 - A complex function formed by composition of "simple" linear and non-linear functions.
- This network has learnable parameters \(\theta, w \).
- Train by gradient descent with respect to classification loss.
- What are the gradients?

Doing this manually is going to get old really fast.

Autograd

- Express complex function as a composition of simpler functions.
- Store this as nodes in a 'computation graph'
- Use chain rule to automatically back-propagate

Popular Autograd Systems: Tensorflow, Torch, Caffe, MXNet, Theano, ...

We'll write our own!

AUTOGRAD / BACK-PROPAGATION

Let's say we want to minimize a loss \(L \), that is a function of parameters and training data.

- Let's say for a parameter \(\theta \) we can write:
 \[L = f(x); x = g(\theta, y) \]
 where \(y \) is independent of \(\theta \), and \(f \) does not use \(\theta \) except through \(x \).
- Now, let's say I gave you the value of \(y \) and the gradient of \(L \) with respect to \(x \).
 - \(x \) is an \(N \)-dimensional vector
 - \(\theta \) is an \(M \)-dimensional vector (if its a matrix, just think of each element as a separate parameter)

Express \(\frac{\partial L}{\partial \theta} \) in terms of \(\frac{\partial L}{\partial x} \) and \(\frac{\partial L}{\partial y} \): which is the partial derivative of one of the dimensions of the outputs of \(g \) with respect to one of the dimensions of its inputs.

For every \(j \)

\[
\frac{\partial L}{\partial \theta_j} = \sum_i \frac{\partial L}{\partial x_i} \frac{\partial g(\theta, y)_j}{\partial \theta_j} + \sum_i \frac{\partial L}{\partial x_i} \frac{\partial g(\theta, y)_j}{\partial \theta_j}
\]

We can similarly compute gradients for the "other" input to \(g \), i.e. \(y \).

Our very own autograd system:

- Build a directed computation graph with a (python) list of nodes
 \[G = [n1, n2, n3, ...] \]
- Each node is an "object" that is one of three kinds:
 - Input
 - Parameter
 - Operation . . .

We will define the graph by calling functions that define functional relationships.

```python
import efd

x = efd.Input()
theta = efd.Parameter()
y = efd.tanh(theta, x)
w = efd.Parameter()
y = efd.matmul(w, y)
```
We will define the graph by calling functions that define functional relationships.

- Each of these statements adds a node to the list of nodes.
- Operation nodes are added by matmul, tanh, etc., and are linked to previous nodes that appear before it in the list as input.
- Every node object is going to have a member element n.top which will be the value of its "output"
 - This can be an arbitrary shaped array.
- For input and parameter nodes, these top values will just be set (or updated by SGD).
- For operation nodes, the top values will be computed from the top values of their inputs.
 - Every operation node will be an object of a class that has a function called forward.
- A forward pass will begin with values of all inputs and parameters set.
- Then we will go through the list of nodes in order, and compute the value of all operation nodes.

Somewhere in the training loop, where the values of parameters have been set before.

- And this will give us the value of the output.
- But now, we want to compute "gradients".
- For each "operation" class, we will also define a function backward.
- All operation and parameter nodes will also have an element called grad.
- We will have to then back-propagate gradients in order.