CSE 559A: Computer Vision

Fall 2019: T-R: 11:30-12:50pm @ Hillman 60

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Arushee Agrawal, Annie Lee, Jiahao Li, Xiaochen Zhou

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Oct 31, 2019
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

- The gradient over a mini-batch is an "approximation", or a "noisy" version of the gradient over the true training set.

\[\frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) = \frac{1}{T} \sum_{t=1}^{T} \nabla_w C_t(x_t, y_t; w_i) + \epsilon \]

- Typically, if you decrease the batch-size, you will want to decrease your step size (because you are "less sure" about the gradient).
STOCHASTIC GRADIENT DESCENT

\[w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) \]

General Notes

Say your cost function is convex, and you care only about decreasing this cost (not worried about overfitting)

- Larger batch size will always give you "better" gradients.
- But diminishing returns after a batch size.
- Computational cost is number of examples per iteration × number of iterations for convergence
 - Higher batch means more computation per iteration, but may mean fewer iterations required to converge.
- Best combination of step size and batch size is an empirical question.
- Another factor: parallelism.
 - Note that you can compute the gradient of all samples of your batch in parallel.
 - Ideally, you want to at least "saturate" all available parallel threads.
STOCHASTIC GRADIENT DESCENT

\[
 w_{i+1} \leftarrow w_i - \gamma \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i)
\]

General Notes

If your cost function is NOT convex, and/or you are worried about overfitting.

- Noise in your gradients might be a good thing!
- Might help you escape local minima.
- Might prevent you from overfitting to train set.
- Try different batch sizes, check performance on dev set, not just train set.
STOCHASTIC GRADIENT DESCENT

Momentum

Standard SGD:

$$g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i)$$

$$w_{i+1} \leftarrow w_i - \gamma g_{i+1}$$

With Momentum:

For $\beta < 1$:

$$g_{i+1} = \frac{1}{B} \sum_{t \in B} \nabla_w C_t(x_t, y_t; w_i) + \beta g_{i}$$

$$w_{i+1} \leftarrow w_i - \gamma g_{i+1}$$

- Keep adding the gradient from a previous batch, again and again across iterations, with decaying weight.
- Remember: g_i was computed with respect to a different position in w space.
- People often use β as high as 0.9 or 0.99.
- Will need to revisit "best" value of γ when you change β.
MACHINE LEARNING

\[w = \arg \min_w \frac{1}{T} \sum_t C_t(w) \]

\[C_t(w) = y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)] \]

- Defined linear classifier on augmented vector \(\tilde{x} \)
- Used gradient descent to learn \(w \).
 - Looked at behavior of gradients.
 - Simplified computation with stochasticity.
- At test time, sign of \(w^T \tilde{x} \) gives us our label.

This is for binary classification. What about the multi-class case? \(y \in \{1, 2, 3, \ldots, C\} \)
Multi-Class Classification

- Want to map an input x to a class label $y \in \{1, 2, 3, \ldots, C\}$
- Binary case: f outputs a single number between 0,1 that represents $P(y = 1)$.
- Multi-class case: f outputs a C dimensional vector that represents a probability distribution over C classes.

$$f(x; W) = \text{SoftMax}(W^T \tilde{x}) = [p_1, p_2, p_3, \ldots, p_C]^T$$

- Here our learnable parameter is now the $N \times C$ matrix W (N is length of feature vector \tilde{x}).
- p_i represents the probability of class i
- Each $p_i > 0$, and $\sum_i p_i = 1$
- SoftMax is a generalization of Sigmoid

$$[p_1, p_2, \ldots]^T = \text{SoftMax}([l_1, l_2, \ldots]^T) \rightarrow p_i = \frac{\exp(l_i)}{\sum_{i'} \exp(l_{i'})}$$

- At Test Time: $y = \arg \max_i p_i$
- $y = \arg \max_i l_i$
Multi-Class Classification

\[f(x; W) = \text{SoftMax}(W^T \tilde{x}) = [p_1, p_2, p_3, \ldots p_C]^T \]
\[[p_1, p_2, \ldots]^T = \text{SoftMax}([l_1, l_2, \ldots]^T) \rightarrow p_i = \frac{\exp(l_i)}{\sum_{i'} \exp(l_{i'})} \]

What about the Loss?

Multi-Class Cross Entropy Loss

\[L(y, f(x)) = L(y, [p_1, p_2, \ldots]^T) = - \log p_y \]

- Another way to write it:
 - \(y^1 = [\delta_1, \delta_2, \ldots] \), where \(\delta_i = 1 \) if \(y = i \) and 0 otherwise.
 - Called a 1-Hot encoding of the class
 - \(y^1 \) also represents a "probability distribution", where the right class has probability 1.
 - In some cases, if you have uncertainty in your training data, \(y^1 \) could be a distribution too.

\[L(y^1 = [\delta_1, \delta_2, \ldots], [p_1, p_2, \ldots]^T) = - \sum_i \delta_i \log p_i \]
Multi-Class Classification

\[
[l_1, l_2, \ldots]^T = W^T \tilde{x}
\]

\[
p_i = \frac{\exp(l_i)}{\sum_{i'} \exp(l_{i'})}
\]

\[
L([\delta_1, \delta_2, \ldots], [p_1, p_2, \ldots]^T) = -\sum_i \delta_i \log p_i
\]

- We're going to use gradient descent to learn \(W \). What is \(\nabla_W L \)?
- First, what is \(\frac{\partial L}{\partial l_i} \)? Take 5 mins.
- Derivative is \(p_i - \delta_i \)
 - This means that you'll get gradients for all classes (not just the true class)
 - Negative gradient wants you to increase probability for right class, and decrease for other classes
- What is \(\nabla_W L \)? Take a few minutes!

\[
\nabla_W L = \tilde{x} \ [p_1 - \delta_1, p_2 - \delta_2, \ldots]
\]

This is a matrix multiply or outer-product of an \(N \times 1 \) vector with an \(1 \times C \) vector.
For regression and both binary and multi-class classification:

- Defined linear classifier on augmented vector \tilde{x}
- Run optimization to learn parameters

The problem is:

- The definition of augmented vector \tilde{x} is hand-crafted
- We have manually engineered our features.
- The only thing we're learning is a linear classifier on top.

Want to learn the features themselves!

Given that SGD works, what's stopping us from learning a function g such that $g(x) = \tilde{x}$?
CLASSIFICATION

\[x \xrightarrow{\text{Encode}} \tilde{x} \xrightarrow{\text{Learn } w} w^T \tilde{x} \xrightarrow{\text{Classify}} > 0 \text{ True} \]
\[< 0 \text{ False} \]

- What is an encoding such that a 'linear' classifier on it will suffice?
- Just list of pixels / quadratic (now N2 dimensional vector) ?
- Kernel methods help with dimensionalit, but still hand-crafted.
Learn $\tilde{x} = g(x; \theta)$ and do binary classification on its output.

$$w = \arg \min_w \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T \tilde{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \tilde{x}_t)]$$

$$\theta, w = \arg \min_{\theta, w} \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T g(x_t; \theta))] + (1 - y_t) \log [1 + \exp(w^T g(x_t; \theta))]$$

Again, use (stochastic) gradient descent.

- But this time, the cost is no longer convex.
• Learn $\tilde{x} = g(x; \theta)$

$$w = \arg \min_w \frac{1}{T} \sum_t y_t \log \left[1 + \exp(-w^T \tilde{x}_t) \right] + (1 - y_t) \log \left[1 + \exp(w^T \tilde{x}_t) \right]$$

$$\theta, w = \arg \min_{\theta, w} \frac{1}{T} \sum_t y_t \log \left[1 + \exp(-w^T g(x_t; \theta)) \right] + (1 - y_t) \log \left[1 + \exp(w^T g(x_t; \theta)) \right]$$

• Again, use (stochastic) gradient descent.
 - But this time, the cost is no longer convex.
 - Turns out .. doesn't matter (sort of).

Recall in the previous case: (where C_t is the cost of one sample)

$$\nabla_w C_t = \tilde{x}_t \left[\frac{\exp(w^T \tilde{x}_t)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right]$$

What about now ?

Exactly the same, with $\tilde{x} = g(x; \theta)$ for the current value of θ.
Learn $\tilde{x} = g(x; \theta)$

$$
\theta, w = \arg \min_{\theta,w} \frac{1}{T} \sum_t y_t \log \left[1 + \exp(-w^T g(x_t; \theta)) \right] + (1 - y_t) \log \left[1 + \exp(w^T g(x_t; \theta)) \right]
$$

$$
\nabla_w C_t = \tilde{x}_t \left[\frac{\exp(w^T \tilde{x}_t)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right]
$$

What about $\nabla_{\theta} C_t$?

First, what is the $\nabla_{\tilde{x}_t} C_t$?

$$
\nabla_{\tilde{x}_t} C_t = w \left[\frac{\exp(w^T \tilde{x}_t)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right]
$$
Learn $\tilde{x} = g(x; \theta)$

$$\theta, w = \arg\min_{\theta,w} \frac{1}{T} \sum_t y_t \log [1 + \exp(-w^T g(x_t; \theta))] + (1 - y_t) \log [1 + \exp(w^T g(x_t; \theta))]$$

$$\nabla_{\tilde{x}_t} C_t = w \left[\frac{\exp(w^T \tilde{x}_t)}{1 + \exp(w^T \tilde{x}_t)} - y_t \right]$$

Now, let's say θ was an $M \times N$ matrix, and $g(x; \theta) = \theta x$.

- N is the length of the vector x
- M is the length of the encoded vector \tilde{x}

What is $\nabla_\theta C_t$?

$$\nabla_\theta C_t = (\nabla_{\tilde{x}_t} C_t) x_t^T$$

This is actually a linear classifier on x

- $w^T \theta x = (\theta^T w)^T x = \tilde{w}^T x$

But because of our factorization, is no longer convex.

If we want to increase the expressive power of our classifier, g has to be non-linear!
The Multi-Layer Perceptron

\[
x \rightarrow h = \theta x \rightarrow \tilde{h}^j = \kappa(h^j) \rightarrow \tilde{h} \rightarrow y = \omega^T \tilde{h} \rightarrow p = \sigma(y)
\]

- \(\kappa \) is an "element-wise" non-linearity.
 - For example \(\kappa(x) = \sigma(x) \). More on this later.
 - Has no learnable parameters.
- \(\sigma \) is our sigmoid to convert log-odds to probability.
 \[
 \sigma(y) = \frac{\exp(y)}{1 + \exp(y)}
 \]
- Multiplication by \(\theta \) and action of \(\kappa \) is a "layer".
 - Called a "hidden" layer, because you're learning a "latent representation".
 - Don't have direct access to the true value of its outputs
 - Learning a representation that jointly with a learned classifier is optimal
The Multi-Layer Perceptron

\[x \xrightarrow{h = \theta x} h \xrightarrow{\tilde{h} = \kappa(h)} \tilde{h} \xrightarrow{y = w^T \tilde{h}} y \xrightarrow{p = \sigma(y)} p \]

- This is a neural network:
 - A complex function formed by composition of "simple" linear and non-linear functions.
- This network has learnable parameters \(\theta, w \).
- Train by gradient descent with respect to classification loss.
- What are the gradients?

Doing this manually is going to get old really fast.

Autograd

- Express complex function as a composition of simpler functions.
- Store this as nodes in a 'computation graph'
- Use chain rule to automatically back-propagate

Popular Autograd Systems: Tensorflow, Torch, Caffe, MXNet, Theano, ...

We'll write our own!
Say we want to minimize a loss L, that is a function of parameters and training data.

Let's say for a parameter θ we can write:

$$L = f(x); x = g(\theta, y)$$

where y is independent of θ, and f does not use θ except through x.

Now, let's say I gave you the value of y and the gradient of L with respect to x.

- x is an N-dimensional vector
- θ is an M-dimensional vector (if it's a matrix, just think of each element as a separate parameter)

Express $\frac{\partial L}{\partial \theta^j}$ in terms of $\frac{\partial L}{\partial x^i}$ and $\frac{\partial g(\theta, y)^i}{\partial \theta^j}$: which is the partial derivative of one of the dimensions of the outputs of g with respect to one of the dimensions of its inputs.

For every j

$$\frac{\partial L}{\partial \theta^j} = \sum_i \frac{\partial L}{\partial x^i} \frac{\partial g(\theta, y)^i}{\partial \theta^j}$$

We can similarly compute gradients for the "other" input to g, i.e. y.
Let's say a specific variable had two "paths" to the loss.

\[
\frac{\partial L}{\partial \theta^j} = \sum_i \frac{\partial L}{\partial \theta^j} \frac{\partial g(\theta, y)^i}{\partial \theta^j} + \sum_i \frac{\partial L}{\partial g'(\theta, y')^i} \frac{\partial g'(\theta, y')^i}{\partial \theta^j}
\]

\[
L = f(x, x'); x = g(\theta, y), x' = g'(\theta, y')
\]
Our very own autograd system:

- Build a directed computation graph with a (python) list of nodes
 \[G = [n1,n2,n3 \ldots] \]
- Each node is an "object" that is one of three kinds:
 - Input
 - Parameter
 - Operation

We will define the graph by calling functions that define functional relationships.

```python
import edf

x = edf.Input()
theta = edf.Parameter()
y = edf.matmul(theta, x)
y = edf.tanh(y)
w = edf.Parameter()
y = edf.matmul(w, y)
```
We will define the graph by calling functions that define functional relationships.

```python
import edf
x = edf.Input()
theta = edf.Parameter()
y = edf.matmul(theta, x)
y = edf.tanh(y)
w = edf.Parameter()
y = edf.matmul(w, y)
```

- Each of these statements adds a node to the list of nodes.
- Operation nodes are added by matmul, tanh, etc., and are linked to previous nodes that appear before it in the list as input.
- Every node object is going to have a member element n.top which will be the value of its "output"
 - This can be an arbitrary shaped array.
- For input and parameter nodes, these top values will just be set (or updated by SGD).
- For operation nodes, the top values will be computed from the top values of their inputs.
 - Every operation node will be an object of a class that has a function called forward.
- A forward pass will begin with values of all inputs and parameters set.
- Then we will go through the list of nodes in order, and compute the value of all operation nodes.
A forward pass will begin with values of all inputs and parameters set.

Then we will go through the list of nodes in order, and compute the value of all operation nodes.

Because nodes were added in order, if we go through them in order, the tops of our inputs will be available.
Somewhere in the training loop, where the values of parameters have been set before.

And this will give us the value of the output.

But now, we want to compute "gradients".

For each "operation" class, we will also define a function *backward*.

All operation and parameter nodes will also have an element called *grad*.

We will have to then back-propagate gradients in order.