MACHINE LEARNING

Overfitting: Good ML "Hygiene"

Remember, you can overfit not just the parameters, but your design choices!

For any given task:

- Have train, dev, val, and test set.
- Train your estimators on the train set.
- Choose hyperparameters based on dev set.
 - Function class
 - Regularization weight
 - Number of iterations to train, etc.
- Keep periodically checking to see if it generalizes to val set.
- Look at the test set only at the "end" of the project.

Learning Components

- Training set of pairs \((x_i, y_i)\)
- Loss function \(L(y, \hat{y})\)
- Hypothesis Space \(H\) to search over for

\[
f = \arg \min_{f \in H} \sum_i L(y_i, f(x_i))
\]

- Basically, algorithm design by trial and error (on training set)
- A better way of solving problems when the problems are ill-posed
- Need to watch out for over-fitting the training set
- The only guarantee that you are not overfitting is empirical verification!

Classification

Consider the case when \(y\) is binary, i.e., \(\mathcal{Y} = \{0, 1\}\).

How do you define the loss function then?

- Ideally, \(L(y, \hat{y})\) is 0 if they are equal, 1 otherwise.

But don’t know how to solve that. What if we solved by regression?

\[
w = \arg \min_w \frac{1}{T} \sum_i (y_i - w^T \hat{x}_i)^2
\]

And at test time, we can output \(y = 1\) if \(w^T \hat{x} > 0.5\) and 0 otherwise.

The problem is the loss function will penalize \(w^T \hat{x}_i > 1\) when \(y_i = 1\). While at test time, this would give us exactly the right answer!
MACHINE LEARNING

Logistic regression

- Learn a function \(f(x) = P(y = 1) \) which regresses to the probability \(y \) is 1.
- We have to choose \(f \) such that the domain of \(f(x) \) lies between [0, 1].

\[
f(x; w) = \sigma(w^T\hat{x}), \quad \sigma(p) = \frac{\exp(p)}{1 + \exp(p)}
\]

- This ensures that the output of \(f \) is between [0, 1]
- \(w^T\hat{x} \) can be interpreted as the log of the odds, or log of ratio between \(P(y = 1) \) to \(P(y = 0) \)
- \(\hat{x} \) is some augmented "feature vector" derived from \(x \).
 - "Linear Classifier" if \(\hat{x} = [x^T; 1]^T \) (log-odds are linear)
 - Could be polynomial \(\hat{x} = [1, x, x^2, x^3] \)
 - Or other arbitrary non-linear functions of \(x \)
 - Can apply even when \(x \) is non-numeric, as long as \(\hat{x} \) is numeric.

MACHINE LEARNING

Logistic Regression

For Binary Classification: \(\mathcal{X} \rightarrow [0, 1] \)

\[
f(x; w) = \sigma(w^T\hat{x}) = \frac{\exp(w^T\hat{x})}{1 + \exp(w^T\hat{x})}
\]

- To classify, \(y = 1 \) if \(P(y = 1) > 0.5 \) or 0 otherwise
- That is, \(y = 1 \) if \(w^T\hat{x} > 0 \) and 0 otherwise.

- Note: Classifier is linear in chosen encoding \(\hat{x} \).
- \(w^T\hat{x} \neq 0 \) defines a "separating hyperplane" between positive and negative part of the space of \(\hat{x} \).

Will correspond to a non-linear boundary in the original \(x \) space

Decision “boundary” Hyperplane
MACHINE LEARNING

Logistic regression

\[P(y = 1) = f(x) = \sigma(w^T \hat{x}) \]

What about the loss?

Cross-Entropy Loss

If true is 1, we want \(f \) to be high, and if it is 0, we want it to be low.

\[
L(y, f(x)) = \begin{cases}
\log P(y = 1) = \log f(x) & \text{if } y = 1 \\
\log P(y = 1) = \log 1 - f(x) & \text{if } y = 0
\end{cases}
\]

There’s a minus because this is the loss.

Minimizing \(\sum L(y_i, f(x_i)) \) can be viewed as maximizing the sum of the log-probabilities, or the product of the probabilities of the labels \(y_i \) under our predicted distribution.

Promotes a high probability for the correct label > uniform distribution (low confidence) over both labels > high probability for incorrect label.

But now, how do we minimize this function in terms of \(w \)? No longer least-squares.

GRADIENT DESCENT

Logistic Regression

\[f(x; w) = \sigma(w^T \hat{x}) = \frac{\exp(w^T \hat{x})}{1 + \exp(w^T \hat{x})} \]

- Cross-entropy / Negative Likelihood Loss

\[
L(y, f(x; w)) = -y \log f(x; w) - (1 - y) \log(1 - f(x; w))
\]

Putting it all together, given a training set of \(\{(x_i, y_i)\} \):

\[
w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T \hat{x}_t)] + (1 - y_t) \log [1 + \exp(w^T \hat{x}_t)]
\]

You can show that this loss is a convex function of \(w \)
(compute the Hessian matrix and show that it’s eigenvalues are non-negative)

So it has a single global minimum.

But how do we find it?
Gradient Descent

Logistic Regression

\[w = \arg \min_w \frac{1}{T} \sum_{t=1}^{T} y_t \log [1 + \exp(-w^T x_t)] + (1 - y_t) \log [1 + \exp(w^T x_t)] \]

More General Form

\[w = \arg \min_w C(w) \quad C(w) = \frac{1}{T} \sum_{t} C_t(w) \]

Iterative algorithm

- Given a current estimate of \(w \), approximate \(C(w) \) as a linear function of \(w \)
 - \(C(w) = \alpha^T w \)
- Do this fit by computing the gradient of \(C(w) \) wrt \(w \)
 - \(\alpha = \nabla_w C(w) \) (would be true if \(C(w) = \alpha^T w \))

Think of \([C(w), w]\) as the co-ordinates on a plane. Which direction to move in \(w \)-space to reduce \(C(w) \)?

\[-\alpha \]

Gradient Descent

\[w = \arg \min_w C(w) \quad C(w) = \frac{1}{T} \sum_{t} C_t(w) \]

- Begin with initial guess \(w_0 \)
- At each iteration:
 - \(w_{i+1} \leftarrow w_i - \gamma \nabla_w C(w_i) \)
- At each iteration, we update the parameters \(w \) by "moving", in \(w \)-space, in the opposite direction of the gradient (at that point \(w_i \)).
- \(\gamma \) is the step-size. When running optimization for training, often called the "learning rate".
- In some cases, \(\gamma \) can be set by doing a line-search
 - Check values of \(C(w - \gamma \nabla_w) \) and pick \(\gamma \) which minimizes the cost
- In other cases, we choose a fixed value of \(\gamma \) (or change it in some pre-determined schedule per iteration)
 - Then, we are moving by a distance that is proportional to magnitude of the gradient
If you select optimal step size by doing a “line search” for γ, you can prove that gradient-descent will converge.

If the function is convex, gradient-descent will converge to the unique global minimum.

Second order variants that consider the Hessian matrix include:

- Newton’s Method
- Quasi-Newton Methods
- Levenberg-Marquardt

But simple gradient descent suffices / our only choice when:

- Function isn’t convex.
- Can’t afford to do line search.
- So many parameters that can’t compute Hessian.

Also, no theoretical guarantees.

Theory still catching up. Meanwhile, we’ll try to understand the “behavior” of the gradients.

Logistic Regression

What is $\nabla_w C(w)$, the gradient of the loss from a single training example?

$$\nabla_w C(w) = \begin{bmatrix} \frac{\partial}{\partial w_1} C(w) \\ \frac{\partial}{\partial w_2} C(w) \\ \vdots \end{bmatrix}$$

If $C(w) = \frac{1}{T} \sum_t C_t(w)$, then $\nabla_w C(w) = \frac{1}{T} \sum_t \nabla_w C_t(w)$

Logistic Regression

$$C_t(w) = y_t \log \left[1 + \exp(-w^T \tilde{x}_t) \right] + (1 - y_t) \log \left[1 + \exp(w^T \tilde{x}_t) \right]$$

What is $\nabla_w C_t(w)$, the gradient of the loss from a single training example?

$$C_t(w) = y_t \log \left[1 + \exp(-w^T \tilde{x}_t) \right] + (1 - y_t) \log \left[1 + \exp(w^T \tilde{x}_t) \right]$$

Ok, what is the derivative of

$$C_t(p) = y_t \log \left[1 + \exp(-p) \right] + (1 - y_t) \log \left[1 + \exp(p) \right]$$

with respect to p (where p is a scalar).

$$\frac{\partial}{\partial p} C_t(p) = \frac{\exp(p) - y_t}{1 + \exp(p)}$$

$$= \frac{\exp(p)}{1 + \exp(p)} - y_t \left[\frac{\exp(-p)}{1 + \exp(-p)} + \frac{\exp(p)}{1 + \exp(p)} \right]$$

$$= \frac{\exp(p)}{1 + \exp(p)} - y_t \left[\frac{1}{1 + \exp(p)} + \frac{\exp(p)}{1 + \exp(p)} \right]$$
\[C_i(w) = y_i \log \left[1 + \exp(-\mathbf{w}^T \tilde{x}_i) \right] + (1 - y_i) \log \left[1 + \exp(\mathbf{w}^T \tilde{x}_i) \right] \]

\[C_i(p) = y_i \log \left[1 + \exp(-p) \right] + (1 - y_i) \log \left[1 + \exp(p) \right] \]

\[\frac{\partial}{\partial p} C_i(p) = \frac{\exp(p)}{1 + \exp(p)} - y_i \]

Observations

- \(\frac{\exp(p)}{1 + \exp(p)} \) is basically the output \(f(x_i; w) \), predicted probability that \(y_i = 1 \).
- Remember: this is the expression for gradient of \(p \), i.e. logit / log-odds.
- Gradient 0 if \(y_i = 0 \) and probability 0, \(y = 1 \) and probability 1.
- Do nothing if predicting right answer with perfect confidence.
- If we say probability \(> 0 \), and \(y_i = 0 \). Gradient is positive.
- If we say probability \(< 1 \), and \(y_i = 1 \). Gradient is negative.

Remember we move in the opposite direction of gradient.

\[w = \arg \min_w \frac{1}{T} \sum_{i=1}^{T} y_i \log \left[1 + \exp(-\mathbf{w}^T \tilde{x}_i) \right] + (1 - y_i) \log \left[1 + \exp(\mathbf{w}^T \tilde{x}_i) \right] \]

Putting it together:

- At each iteration \(t \),
 - Based on current \(w \), compute \(f(x_i, w) = \tilde{y}_i \)
 - Compute derivative of the "output" as \(\tilde{y}_i - y_i \)
 - Multiply by \(x_i \) to get \(\nabla_w \)
 - Change \(w \) by subtracting some \(\gamma \) times this gradient.

\[\nabla_w C_i(w) = \nabla_w (\mathbf{w}^T \tilde{x}_i) \left[\frac{\exp(\mathbf{w}^T \tilde{x}_i)}{1 + \exp(\mathbf{w}^T \tilde{x}_i)} - y_i \right] \]

\[\nabla_w C_i(w) = \nabla_w (\mathbf{w}^T \tilde{x}_i) \frac{\partial C_i(p)}{\partial p} \]
Gradient Descent

Putting it together:

- At each iteration i,
 - Based on current w, compute $f(x_i, w) = \hat{y}_i$ for every training sample
 - Compute derivative of the "output" as $\hat{y}_i - y_i$ for every training sample
 - Multiply by x_i and average across all training samples to get V_w
 - Change w by subtracting some γ times this gradient.

$C(w) = \frac{1}{T} \sum_{t=1}^{T} C_t(w) \Rightarrow V_w = \frac{1}{T} \sum_{t=1}^{T} V_w C_t$

Expensive when we have a LOT of training data.

Stochastic Gradient Descent

In practice:

- Shuffle order of training examples
- Choose a batch size
- Take consecutive groups of B samples as you loop through iterations
 - $[1, B]$ in iteration 1
 - $[B+1, 2B]$ in iteration 2
 - ...
- Once you reach the end of the training set (called one "epoch"), shuffle the order again.