
CSE 559A: Computer Vision

Fall 2018: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Zhihao Xia, Charlie Wu, Han Liu

Oct 30, 2018

http://www.cse.wustl.edu/~ayan/courses/cse559a/

1

http://www.cse.wustl.edu/~ayan/courses/cse559a/

GENERALGENERAL
Proposal Feedback Out

Do a pull on your existing proposal repo
Read feedback.txt
In some cases, there are additional steps you need to take. So do this now !

Problem Set 4 ready to Clone
Due two weeks from today

2

MACHINE LEARNINGMACHINE LEARNING
Obtain a function from data

Maps inputs from domain to outputs from domain

Components

Training set of pairs

Loss function

Hypothesis Space to search over for

Basically, algorithm design by trial and error (on training set)
A better way of solving problems when the problems are ill-posed
Need to watch out for over-fitting the training set

f :  → 

 

(,)x

i

y

i

L(y,)y

̂

 f

f = arg L(, f ())min

f∈

∑

i

y

i

x

i

3

MACHINE LEARNINGMACHINE LEARNING
Classification

Consider the case when is binary, i.e., .

How do you define the loss function then ?

Ideally, is 0 if they are equal, 1 otherwise.

But don't know how to solve that. What if we solved by regression ?

And at test time, we can output if and otherwise.

The problem is the loss function will penalize when . While at test time, this would give us
exactly the right answer !

y  = {0, 1}

L(y,)y

̂

w = arg (−min

w

1

T

∑

t

y

t

w

T

x ̃

t

)

2

y = 1 > 0.5w

T

x ̃ 0

> 1w

T

x ̃

t

= 1y

t

4

MACHINE LEARNINGMACHINE LEARNING
Logistic regression

Learn a function which regresses to the probability is 1.

We have to choose such that the domain of lies between .

This ensures that the output of is between

 can be interpreted as the log of the odds, or log of ratio between to

 is some augmented "feature vector" derived from .

"Linear Classifier" if (log-odds are linear)

Could be polynomial

Or other arbitrary non-linear functions of

Can apply even when is non-numeric, as long as is numeric.

f (x) = P(y = 1) y

f f (x) [0, 1]

f (x;w) = σ

()

, σ(p) =w

T

x ̃

exp(p)

1 + exp(p)

f [0, 1]

w

T

x ̃ P(y = 1) P(y = 0)

x ̃ x

= [; 1x ̃ x

T

]

T

= [1, x, ,]x ̃ x

2

x

3

x

x x

̂

5

MACHINE LEARNINGMACHINE LEARNING
Logistic Regression

For Binary Classification:

To classify, if or 0 otherwise

That is, if and otherwise.

Note: Classifier is linear in chosen encoding .

 defines a "separating hyperplane" between positive and negative part of the space of .

  → [0, 1]

f (x;w) = σ() =w

T

x ̃

exp()w

T

x ̃

1 + exp()w

T

x ̃

y = 1 P(y = 1) > 0.5

y = 1 > 0w

T

x ̃ 0

x ̃

<> 0w

T

x ̃ x ̃

6

MACHINE LEARNINGMACHINE LEARNING

13

MACHINE LEARNINGMACHINE LEARNING

15

MACHINE LEARNINGMACHINE LEARNING
Logistic regression

What about the loss ?

Cross-Entropy Loss

If true is 1, we want to be high, and if it is 0, we want it to be low.

There's a minus because this is the loss.

Minimizing can be viewed as maximizing the sum of the log-probabilities, or the product of the
probabilities of the labels under our predicted distribution.

Promotes a high probability for the correct label > uniform distribution (low confidence) over both labels >
high probability for incorrect label.

But now, how do we minimize this function in terms of ? No longer least-squares.

P(y = 1) = f (x) = σ

()

w

T

x ̃

y f (x)

L(y, f (x)) = −

{

logP(y = 1) = log f (x)

logP(y = 1) = log 1 − f (x)

if y = 1

if y = 0

L(y, f (x)) = −y log f (x) − (1 − y) log(1 − f (x))

L(, f ())∑

t

y

t

x

t

y

t

w

16

GRADIENT DESCENTGRADIENT DESCENT
Logistic Regression

Cross-entropy / Negative Likelihood Loss

f (x;w) = σ() =w

T

x ̃

exp()w

T

x ̃

1 + exp()w

T

x ̃

L(y, f (x;w)) = −y log f (x;w) − (1 − y) log(1 − f (x;w))

f (x;w) = 1 − f (x;w) =

1

1 + exp(−)w

T

x ̃

1

1 + exp()w

T

x ̃

17

GRADIENT DESCENTGRADIENT DESCENT
Logistic Regression

Cross-entropy / Negative Likelihood Loss

Putting it all together, given a training set of :

f (x;w) = σ() =w

T

x ̃

exp()w

T

x ̃

1 + exp()w

T

x ̃

L(y, f (x;w)) = y log

[

1 + exp(−)

]

+ (1 − y) log

[

1 + exp()

]

w

T

x ̃ w

T

x ̃

{(,)}x

t

y

t

w = arg log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

min

w

1

T

∑

t=1

T

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

18

GRADIENT DESCENTGRADIENT DESCENT
Logistic Regression

You can show that this loss is a convex function of
(compute the Hessian matrix and show that it's eigenvalues are non-negative)
So it has a single global minimum.

But how do we find it ?

w = arg log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

min

w

1

T

∑

t=1

T

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

w

19

GRADIENT DESCENTGRADIENT DESCENT
Logistic Regression

More General Form

Iterative algorithm

Given a current estimate of , approximate as a linear function of

Do this fit by computing the gradient of wrt

 (would be true if)

Think of as the co-ordinates on a plane. Which direction to move in -space to reduce ?

w = arg log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

min

w

1

T

∑

t=1

T

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

w = arg C(w) C(w) = (w)min

w

1

T

∑

t

C

t

w C(w) w

C(w) = wα

T

C(w) w

α = C(w)∇

w

C(w) = wα

T

[C(w),w] w C(w)

−α

20

GRADIENT DESCENTGRADIENT DESCENT

Begin with initial guess

At each iteration :

At each iteration, we update the parameters by "moving", in -space, in the
opposite direction of the gradient (at that point).

 is the step-size. When running optimization for training, oʿen called the "learning rate".

In some cases, can be set by doing a line-search

Check values of and pick which minimizes the cost

In other cases, we choose a fixed value of (or change it in some pre-determined schedule per iteration)

Then, we are moving by a distance that is proportional to magnitude of the gradient

w = arg C(w) C(w) = (w)min

w

1

T

∑

t

C

t

w

0

i

← − γ C()w

i+1

w

i

∇

w

w

i

w w

w

i

γ

γ

C(w − γ)∇

w

γ

γ

21

GRADIENT DESCENTGRADIENT DESCENT

26

GRADIENT DESCENTGRADIENT DESCENT

28

GRADIENT DESCENTGRADIENT DESCENT

29

GRADIENT DESCENTGRADIENT DESCENT
If you select optimal step size by doing a "line search" for , can prove that gradient-descent will converge.

If function is convex, converge to unique global minimum.
Second order variants that consider the Hessian matrix: Newton & Quasi-Newton Methods

Gauss-Newton, Levenberg-Marquardt, ...

But simple gradient descent suffices / our only choice when:

Function isn't convex.
Can't afford to do line search.
So many parameters that can't compute Hessian.

Also, no theoretical guarantees.

Theory still catching up. Meanwhile, we'll try to understand the "behavior" of the gradients.

γ

30

GRADIENT DESCENTGRADIENT DESCENT

Logistic Regression

What is , the gradient of the loss from a singe training example ?

C(w) =∇

w

⎡

⎣

⎢

⎢

⎢

C(w)

∂

∂w

1

C(w)

∂

∂w

2

⋮

⎤

⎦

⎥

⎥

⎥

If C(w) = (w), then C(w) = (w)

1

T

∑

t

C

t

∇

w

1

T

∇

w

C

t

(w) = log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

C

t

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

(w)∇

w

C

t

32

GRADIENT DESCENTGRADIENT DESCENT

Ok, what is the derivative of

with respect to (where is a scalar).

(w) = log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

C

t

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

(p) = log

[

1 + exp(−p)

]

+ (1 −) log

[

1 + exp(p)

]

C

t

y

t

y

t

p p

(p) = −

∂

∂p

C

t

exp(p)

1 + exp(p)

y

t

(p) = + (1 −)

∂

∂p

C

t

y

t

− exp(−p)

1 + exp(−p)

y

t

exp(p)

1 + exp(p)

= −

[

+

]

exp(p)

1 + exp(p)

y

t

exp(−p)

1 + exp(−p)

exp(p)

1 + exp(p)

= −

[

+

]

exp(p)

1 + exp(p)

y

t

1

1 + exp(p)

exp(p)

1 + exp(p)

34

GRADIENT DESCENTGRADIENT DESCENT

Observations

 is basically the output , predicted probability that .

Remember: this is the expression for gradient of , i.e. logit / log-odds.

Gradient 0 if and probability 0, and probability 1.

Do nothing if predicting right answer with perfect confidence.

If we say probability > 0, and . Gradient is positive.

If we say probability < 1, and . Gradient is negative.

Remember we move in the opposite direction of gradient.

(w) = log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

C

t

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

(p) = log

[

1 + exp(−p)

]

+ (1 −) log

[

1 + exp(p)

]

C

t

y

t

y

t

(p) = −

∂

∂p

C

t

exp(p)

1 + exp(p)

y

t

exp(p)

1+exp(p)

f (;w)x

t

= 1y

t

p

= 0y

t

y = 1

= 0y

t

= 1y

t

35

GRADIENT DESCENTGRADIENT DESCENT

Also, changing makes a much bigger difference in the corresponding probability,
when is near 0 / probability near .

(w) = log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

C

t

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

(p) = log

[

1 + exp(−p)

]

+ (1 −) log

[

1 + exp(p)

]

C

t

y

t

y

t

(p) = −

∂

∂p

C

t

exp(p)

1 + exp(p)

y

t

p

p 0.5

36

GRADIENT DESCENTGRADIENT DESCENT

But this is still derivative with respect to . We want gradient with respect to .

(w) = log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

C

t

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

(p) = log

[

1 + exp(−p)

]

+ (1 −) log

[

1 + exp(p)

]

C

t

y

t

y

t

(p) = −

∂

∂p

C

t

exp(p)

1 + exp(p)

y

t

p w

(w) = ×

[

−

]

∂

∂

w

j

C

t

x ̃

j

t

exp()

w

T

x ̃

t

1 + exp()

w

T

x ̃

t

y

t

(w) =

[

−

]

∇

w

C

t

x ̃

t

exp()

w

T

x ̃

t

1 + exp()

w

T

x ̃

t

y

t

(w) = ()

[

−

]

∇

w

C

t

∇

w

w

T

x ̃

t

exp()w

T

x ̃

t

1 + exp()w

T

x ̃

t

y

t

(w) = p(w)

∇

w

C

t

∇

w

∂ (p)C

t

∂p

39

GRADIENT DESCENTGRADIENT DESCENT

Putting it together:

At each iteration ,

Based on current , compute

Compute derivative of the "output" as

Multiply by to get

Change by subtracting some times this gradient.

w = arg log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

min

w

1

T

∑

i=1

T

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

i

w f (,w) =x

t

y

̂

t

−y

̂

t

y

t

x

t

∇

w

w γ

40

GRADIENT DESCENTGRADIENT DESCENT

Putting it together:

At each iteration ,

Based on current , compute for every training sample

Compute derivative of the "output" as for every training sample

Multiply by and average across all training samples to get

Change by subtracting some times this gradient.

Expensive when we have a LOT of training data.

w = arg log

[

1 + exp(−)

]

+ (1 −) log

[

1 + exp()

]

min

w

1

T

∑

i=1

T

y

t

w

T

x ̃

t

y

t

w

T

x ̃

t

i

w f (,w) =x

t

y

̂

t

−y

̂

t

y

t

x

t

∇

w

w γ

C(w) = (w) ⇒ C =

1

T

∑

t

C

t

∇

w

1

T

∑

t

∇

w

C

t

41

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT

Remember, summation over training samples meant to approximate an expectation over .

In other words, we are approximating the "true" gradient with gradients over samples.

What if we used a smaller number of samples in each iteration, but different samples in different iterations ?

w = arg C(, ;w)min

w

1

T

∑

t

x

t

y

t

= C(, ;w)∇

w

1

T

∑

t

∇

w

x

t

y

t

(x, y)P

XY

C(, ;w) → C(x, y;w)

1

T

∑

t

x

t

y

t

�

(x,y)P

XY

C(, ;w) → C(x, y;w)

1

T

∑

t

∇

w

x

t

y

t

�

(x,y)

P

XY

∇

w

42

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT
Single sample

At each iteration, choose a random .

"Mini"-batched SGD (sometimes GD is called Batched GD)

At each iteration, choose a random smaller batch of size .

With replacement ? Without replacement ?

← − γ (, ;)w

i+1

w

i

∇

w

C

t

x

t

y

t

w

i

t ∈ {1, 2,… , T}

← − γ (, ;)w

i+1

w

i

∇

w

1

B

∑

t∈

C

t

x

t

y

t

w

i

 B << T

43

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT
In practice:

Shuffle order of training examples
Choose a batch size

Take consecutive groups of samples as you loop through iterations

[1,B] in iteration 1
[B+1,2B] in iteration 2
. . .

Once you reach the end of the training set (called one "epoch"),
shuffle the order again.

B

44

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT

General Notes

The gradient over a mini-batch is an "approximation", or a "noisy" version of the gradient over the true
training set.

Typically, if you decrease the batch-size, you will want to decrease your step size (because you are "less
sure" about the gradient).

← − γ (, ;)w

i+1

w

i

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

(, ;) = (, ;) + ϵ

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

1

T

∑

t=1

T

∇

w

C

t

x

t

y

t

w

i

45

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT

General Notes

Say your cost function is convex, and you care only about decreasing this cost (not worried about overfitting)

Larger batch size will always give you "better" gradients.
But diminishing returns aʿer a batch size.

Computational cost is number of examples per iteration number of iterations for convergence

Higher batch means more computation per iteration, but may mean fewer iterations required to
converge.

Best combination of step size and batch size is an empirical question.
Another factor: parallelism.

Note that you can compute the gradient of all samples of your batch in parallel.
Ideally, you want to at least "saturate" all available parallel threads.

← − γ (, ;)w

i+1

w

i

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

×

46

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT

General Notes

If your cost function is NOT convex, and/or you are worried about overfitting.

Noise in your gradients might be a good thing !
Might help you escape local minima.
Might prevent you from overfitting to train set.
Try different batch sizes, check performance on dev set, not just train set.

← − γ (, ;)w

i+1

w

i

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

47

STOCHASTIC GRADIENT DESCENTSTOCHASTIC GRADIENT DESCENT
Momentum

Standard SGD:

With Momentum:

For :

Keep adding the gradient from a previous batch, again and again across iterations, with decaying weight.

Remember: was computed with respect to a different position in space.

People oʿen use as high as or .

Will need to revisit "best" value of when you change .

= (, ;)g

i+1

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

← − γw

i+1

w

i

g

i+1

β < 1

= (, ;) + βg

i+1

1

B

∑

t∈

∇

w

C

t

x

t

y

t

w

i

g

i

← − γw

i+1

w

i

g

i+1

g

i

w

β 0.9 0.99

γ β

48

