GROUPING & SEGMENTATION

Partition the set of pixels into disjoint sets or groups

But what is the basis of this grouping?

- Physical
 - Lie on the same surface / plane
 - Made of the same material
 - Moving together rigidly

Dual of the edge detection problem!
GROUPING & SEGMENTATION

But what is the basis of this grouping?

- Semantic
 - Same object
 - Foreground / background
 - Interesting / non-interesting

Semantic segmentation: often humans will disagree on what goes where.

GROUPING & SEGMENTATION

Simplest Version: Superpixel Segmentation

- Partition image into a large number of segments called superpixels.
- Many segments, each segment relatively small.
- Oversegmentation of the image
 - Each object / plane / surface might be broken into multiple segments
 - But (hope) each segment does not cross a boundary.
- Can be based on appearance alone
- Simplifies further processing (dealing with \(K \) segments instead of \(N \) pixels)

GROUPING & SEGMENTATION

SLIC Superpixels

Achanta et al., 2010. Simple Linear Iterative Clustering.

Formally, given an image \(I_n \) with \(N \) pixels, you want to group the pixels into \(K << N \) super pixels.

You want to determine a label

\[
L[n] \in \{1, 2, \ldots, K\}
\]

for every pixel \(n \), based on some metric.

Note the value of \(L \) doesn’t matter. What matters is similar pixels have the same label. This is clustering!

The final output we care about is \(K \) sets

\[
S_k = \{ n : L[n] = k \}
\]
GROUPING & SEGMENTATION

SLIC Superpixels

We will want to group pixels that appear similar and are close by into the same super-pixel.

Define an "augmented" image $I'[n]$ where each $I'[n] \in \mathbb{R}^5$

- First 3 dimensions are R,G,B
- Two dimensions are x and y co-ordinates.

For grayscale images, $\mu_k \in \mathbb{R}^3$.

Determine labeling $L[n]$ to minimize the following cost:

$$ L = \arg\min_{L} \min_{(\mu_k)} \sum_{k=1}^{K} \sum_{n: L[n]=k} ||I'[n] - \mu_k||^2 $$

Here, each $\mu_k \in \mathbb{R}^5$.

- This is K-means clustering.
- Easy to see that μ_k will be the mean of the I' vectors of pixels assigned to label k.
- We're saying that all pixels assigned the label k should be close to each other in the squared distance sense of their augmented vectors.
- This augmented vector encodes both appearance and location.
- So we want pixels that look the same and are close-by to have the same label.

GROUPING & SEGMENTATION

SLIC Superpixels

Typically, use Lab color space instead of RGB.

You can weight the contribution of location vs appearance by normalizing (x,y) in I' differently.

$$ I'[n] = [I[n]_R, I[n]_G, I[n]_B, c, a, b]^T $$

- Begin with some initial assignment $L[n]$ (more later).
- At each iteration ...

Step 1: For each k, assign

$$ \mu_k = \text{Mean}\{I'[n]: L[n]=k\} $$

Step 2: For each n, assign

$$ L[n] = \arg\min_k ||I'[n] - \mu_k||^2 $$

- Does this converge?
- How do we initialize?
- Do we really need to do $K \times N$ computations of $||I'[n] - \mu_k||^2$?
GROUPING & SEGMENTATION

SLIC: Initialization

- Actually, begin with an assignment of \(\{ \mu_k \} \) (and do a step 2).
- Given desired number of super-pixels \(K \), choose \(K \) points on a grid.
 - Spaced horizontally and vertically apart by \(S = \sqrt{\frac{HW}{K}} \)
- Set each \(\mu_k = I'(n_k) \) as the augmented vector of one of these points.
- In step 2, each seed is going to attract pixels in its neighborhood that are most like it.
- Sometimes this initialization gives you a ‘seed’ that lies right on an edge.
 - Bad because pixel on either side of edge will often look nothing like it.

Solution: Look in a 3x3 neighborhood, and choose pixel with lowest gradient magnitude.

GROUPING & SEGMENTATION

SLIC: Minimization

At any given iteration, for step 2:
- Don’t consider all possible \(K \) for every \(n \).
- Instead, say that a pixel \(n \) can only be assigned to a cluster \(k \) if \(n \) is within a \(2S \times 2S \) window around the spatial co-ordinates in \(\mu_k \).
- Note that \(\mu_k \)'s will no longer be on a regular grid.
GROUPING & SEGMENTATION

SLIC: Minimization

At any given iteration, for step 2:

- Initialize min_dist\[n\] to Infinity for all \(n \)
- Loop through each \(\mu_k \), and consider pixels in \(2S \times 2S \) window around \(\mu_k \)
 - This will be a regular grid.
- For each pixel in this window, compute distance of \(I'[n] \) to \(\mu_k \), compare to min_dist\[n\], if lower, update min_dist\[n\] and update \(L[n] \).

Do we need to loop over \(K \)? Can get some parallelism if you’re clever about it.

GROUPING & SEGMENTATION

SLIC: Uses

Given a set of super-pixels \(S_k = \{ n : L[n] = k \} \):

- You can “denoise” your image by smoothing independently within each \(S_k \).
 - Replace all intensities by their mean.
 - Fit intensity to be a linear function of \(n \).
- You can “denoise” other scene properties
 - Filter your stereo cost volume within each super-pixel.
 - Take your disparities within each super-pixel, and fit them to a plane.
 - Do the aggregation for Lucas-Kanade flow estimation within each super-pixel.
- Build super-pixels with intensity + other information
 - Get an initial estimate of disparity, add it to your augmented vector \(I'[n] \).
 - Get a super-pixel segmentation. Smooth cost-volume, re-estimate disparities.
 - Repeat segmentation ...
- Group super-pixels (instead of pixels) into objects or by semantic labels

GROUPING & SEGMENTATION

Graph-based Methods

Foreground / Background Segmentation

Assign a label of 1 (foreground) or 0 (background) for each pixel in the image.

Let’s say user has labeled some pixels as foreground or background.
(or these are noisy / sparse predictions from some algorithm)

Image from Rother et al., GrabCuts.
GROUPING & SEGMENTATION

Graph-based Methods

\[L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in \mathbb{E}} S_{n, n'}(L[n], L[n']) \]

Kind of like our stereo setup, but binary labeling problem.

GROUPING & SEGMENTATION

Graph-based Methods

\[L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in \mathbb{E}} S_{n, n'}(L[n], L[n']) \]

E.g., \(\delta \) for unlinked pixels. Very high if neighbors are in for \(L[n] \) different from user label.

GROUPING & SEGMENTATION

Graph-based Methods

\[L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in \mathbb{E}} S_{n, n'}(L[n], L[n']) \]

Again, pairs of neighboring pixels. Horizontal / Vertical / Diagonal

GROUPING & SEGMENTATION

Graph-based Methods

\[L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in \mathbb{E}} S_{n, n'}(L[n], L[n']) \]

Now will depend on pixel location. Often based on intensity differences / whether there is an edge.
GROUPING & SEGMENTATION

Graph-based Methods

Formally, let’s say our smoothness cost $S_{n,n'}(l, l') = w_n w_{n'} \delta(l = l')$, for $w_{n,n'} \geq 0$.

$$L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])$$

- Build a graph with vertices $V = \{n\} \cup \{0, 1\}$.
- Place an edge between every $(n, n') \in E$ with weight $w_{n,n'}$.
- Place an edge between $(n, 0)$ for every n with weight $C[n, 1]$ (assuming costs are positive).
- Place an edge between $(n, 1)$ for every n with weight $C[n, 0]$ (assuming costs are positive).
- Partition the vertices into sets A, B such that $0 \in A$, $1 \in B$, to minimize $\text{Cut}(A, B)$.
 - The cut is defined as the sum of the weights of the edges going between vertices in A to vertices in B.
 - Can be solved in polynomial time (e.g., Stoer-Wagner).
 - Assign all pixels in A label 0, and all pixels in B label 1.

Graph-based Methods

- Initialize unary costs C with user labels. Do a segmentation.
- Now look at the foreground and background pixels. Fit a probability distribution to each (mixture of Gaussians, histogram).
- Update $C[n, l]$ based on how well the intensity at location n fits with the foreground/background distributions (for $l=1/0$).