GENERAL

- Project Proposals Deadline was Sunday
 - We'll be providing you with feedback over the next week.
- Problem Set 3 Due Thursday
- Friday Office Hours will be (always) in Lopata 103

GROUPING & SEGMENTATION

Partition the set of pixels into disjoint sets or groups

But what is the basis of this grouping?

- Physical
 - Lie on the same surface / plane
 - Made of the same material
 - Moving together rigidly

Dual of the edge detection problem!
GROUPING & SEGMENTATION

But what is the basis of this grouping?
- Semantic
 - Same object
 - Foreground / background
 - Interesting / non-interesting

Semantic segmentation: often humans will disagree on what goes where.

GROUPING & SEGMENTATION

Simplest Version: Superpixel Segmentation
- Partition image into a large number of segments called superpixels.
- Many segments, each segment relatively small.
- Oversegmentation of the image
 - Each object / plane / surface might be broken into multiple segments
 - But (hope) each segment does not cross a boundary.
- Can be based on appearance alone
- Simplifies further processing (dealing with K segments instead of N pixels)

GROUPING & SEGMENTATION

SLIC Superpixels
Achanta et al., 2010. Simple Linear Iterative Clustering.
Formally, given an image $I[n]$ with N pixels, you want to group the pixels into $K << N$ super pixels.
You want to determine a label
$$L[n] \in \{1, 2, \ldots, K\}$$
for every pixel n, based on some metric.
Note the value of L doesn’t matter. What matters is similar pixels have the same label. This is clustering!
The final output we care about is K sets
$$S_k = \{n : L[n] = k\}$$
SLIC Superpixels

We will want to group pixels that appear similar and are close by into the same super-pixel.

Define an "augmented" image $I' [n]$ where each $I' [n] \in \mathbb{R}^5$

- First 3 dimensions are R,G,B
- Two dimensions are x and y co-ordinates.

For grayscale images, $I' [n] \in \mathbb{R}^3$.

Typically, use Lab color space instead of RGB.

You can weight the contribution of location vs appearance by normalizing (x,y) in I' differently.

$$I' [n] = [I[n]_R, I[n]_G, I[n]_B, c_w, c_h]^T$$

Grouping & Segmentation

Determine labeling $L [n]$ to minimize the following cost:

$$L = \arg \min_{L} \min_{(\mu_k)} \sum_{k=1}^{K} \sum_{n : L[n] = k} ||I' [n] - \mu_k ||^2$$

Here, each $\mu_k \in \mathbb{R}^5$.

- This is K-means clustering.
- Easy to see that μ_k will be the mean of the I' vectors of pixels assigned to label k.
- We're saying that all pixels assigned the label k should be close to each other in the squared distance sense of their augmented vectors.
- This augmented vector encodes both appearance and location.
- So we want pixels that look the same and are close-by to have the same label.

K-Means: Lloyd's algorithm

- Begin with some initial assignment $L [n]$ (more later).
- At each iteration ...

 Step 1: For each k, assign

 $$\mu_k = \text{Mean} \{I' [n] \mid L[n] = k\}$$

 Step 2: For each n, assign

 $$L [n] = \arg \min_k ||I' [n] - \mu_k ||^2$$

- Does this converge?
- How do we initialize?
- Do we really need to do $K \times N$ computations of $||I' [n] - \mu_k ||^2$?
SLIC: Initialization

- Actually, begin with an assignment of \(\{ \mu_k \} \) (and do a step 2).
- Given desired number of super-pixels \(K \), choose \(K \) points on a grid.
 - Spaced horizontally and vertically apart by \(S = \sqrt{\frac{HW}{K}} \).
- Set each \(\mu_k = I'[n_k] \) as the augmented vector of one of these points.
- In step 2, each seed is going to attract pixels in its neighborhood that are most like it.
- Sometimes this initialization gives you a 'seed' that lies right on an edge.
 - Bad because pixel on either side of edge will often look nothing like it.

Solution: Look in a 3x3 neighborhood, and choose pixel with lowest gradient magnitude.

SLIC: Minimization

At any given iteration, for step 2:

- Don't consider all possible \(K \) for every \(n \).
- Instead, say that a pixel \(n \) can only be assigned to a cluster \(k \) if \(n \) is within a \(2S \times 2S \) window around the spatial co-ordinates in \(\mu_k \).
- Note that \(\mu_k \)'s will no longer be on a regular grid.

At any given iteration, for step 2:

- Initialize \(\text{min}_\text{dist}[n] \) to Infinity for all \(n \)
- Loop through each \(\mu_k \), and consider pixels in \(2S \times 2S \) window around the spatial co-ordinates in \(\mu_k \).
 - This will be a regular grid.
- For each pixel in this window, compute distance of \(I'[n] \) to \(\mu_k \), compare to \(\text{min}_\text{dist}[n] \), if lower, update \(\text{min}_\text{dist}[n] \) and update \(L[n] \).

Do we need to loop over \(K \) ? Can get some parallelism if you’re clever about it.
GROUPING & SEGMENTATION

SLIC: Uses

Given a set of super-pixels \(S_k = \{ n : L[n] = k \} \):

- You can "denoise" your image by smoothing independently within each \(S_k \).
 - Replace all intensities by their mean.
 - Fit intensity to be a linear function of \(n \).
- You can "denoise" other scene properties
 - Filter your stereo cost volume within each super-pixel.
 - Take your disparities within each super-pixel, and fit them to a plane.
 - Do the aggregation for Lucas-Kanade flow estimation within each super-pixel.
- Build super-pixels with intensity + other information
 - Get an initial estimate of disparity, add it to your augmented vector \(I'[n] \).
 - Get a super-pixel segmentation. Smooth cost-volume, re-estimate disparities.
 - Repeat segmentation ...
- Group pixels (instead of super-pixels) into objects or by semantic labels

GROUPING & SEGMENTATION

Graph-based Methods

Assign a label of 1 (foreground) or 0 (background) for each pixel in the image.

Let's say user has labeled some pixels as foreground or background.
(or these are noisy / sparse predictions from some algorithm)

\[
L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n,n') \in \mathbb{E}} S_{n,n'}(L[n], L[n'])
\]

Kind of like our stereo setup, but binary labeling problem.
GROUPING & SEGMENTATION

Graph-based Methods

\[
L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])
\]

(comes from user input / algorithm)
E.g., (0) for unlabeled pixels.
May high weights where n or L[n] different from user input.

Again, pairs of neighboring pixels.
Horizontal / Vertical / Diagonal.

GROUPING & SEGMENTATION

Graph-based Methods

\[
L = \arg \min_{L[n] \in \{0, 1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{n,n'}(L[n], L[n'])
\]

Now will depend on pixel location.
Often based on intensity differences / whether there is an edge.
GROUPING & SEGMENTATION

Graph-based Methods

Formally, let’s say our smoothness cost \(S_{\alpha,\beta}(l, l') = w_{\alpha,\beta} \delta[l = l'] \), for \(w_{\alpha,\beta} \geq 0 \).

\[
L = \arg \min_{L[n] \in \{0,1\}} C[n, L[n]] + \sum_{(n, n') \in E} S_{\alpha,\beta}(L[n], L[n'])
\]

- Build a graph with vertices \(V = \{n\} \cup \{0, 1\} \).
- Place an edge between every \((n, n') \in E\) with weight \(w_{\alpha,\beta} \).
- Place an edge between \((n, 0)\forall n\) with weight \(C[n, 1] \) (assuming costs are positive).
- Place an edge between \((n, 1)\forall n\) with weight \(C[n, 0] \) (assuming costs are positive).
- Partition the vertices into sets \(A, B \) such that \(0 \in A, 1 \in B \), to minimize \(\text{Cut}(A, B) \).
 - The cut is defined as the sum of the weights of the edges going between vertices in \(A \) to vertices in \(B \).
 - Can be solved in polynomial time (e.g., Stoer-Wagner).
 - Assign all pixels in \(A \) label 0, and all pixels in \(B \) label 1.

GROUPING & SEGMENTATION

Graph-based Methods

- Initialize unary costs \(C \) with user labels. Do a segmentation.
- Now look at the foreground and background pixels. Fit a probability distribution to each (mixture of Gaussians, histogram).
- Update \(C[n, l] \) based on how well the intensity at location \(n \) fits with the foreground/background distributions (for \(l = 1/0 \)).
GROUPING & SEGMENTATION

Multi-label Case: \(L[n] = \{ A, B, C, \ldots \} \)

- Begin with some initial assignment of \(L[n] \) (perhaps the pixel-wise minimizer of \(C \))
- Then update \(L \) by making one of two kinds of moves in each iteration
 - **\(\alpha \)-Expansion**
 - Choose one of the labels (say \(A \))
 - Build a binary segmentation problem where \(1 = A, 0 = \) everything else
 - Set \(C[n, 0] = \infty \) for all pixels \(n \) where the current label is already \(A \)
 - Set \(C[n, 0] \) = cost of its current assigned label for every other pixel
 - Set \(C[n, 1] \) = cost of \(A \) for every other pixel
 - Do a min-cut. Replace all pixels labeled 1 with \(A \).
 - **\(\alpha - \beta \) Swap**
 - Choose a pair of labels (say \(A \) and \(B \))
 - Now define a new graph, containing only pixels that currently have label \(A \) or \(B \).
 - Solve the binary segmentation problem
- Iterate through these different kinds of moves for different choices of labels.

GROUPING & SEGMENTATION

References

- Rother et al., GrabCut -Interactive Foreground Extraction using Iterated Graph Cuts, SIGGRAPH 2004.

GROUPING & SEGMENTATION

Next Time

- Min-cut can often lead to isolated points
- Avoid with a method called “Normalized Cuts”