GENERAL

- No Class Tuesday (Fall Break)
- No office hours on Monday.
- There’s an incompatibility with the latest matplotlib in the support code in Problem 2 in PSET 3.
 - See Piazza post. You need to comment out lines saying `ax.hold()`
- Project Proposals Due next Thursday!

RECTIFIED STEREO MATCHING

Last Time

- We define a cost volume C of size $W \times H \times D$
 - $C[x, y, d]$ measures dissimilarity between (x, y) in left image and $(x - d, y)$ in right image
- Simplest Approach: $d[x, y] = \arg \min d C[x, y, d]$
- Too noisy: want to express that disparity (and therefore depth) of nearby pixels is similar
- Ad-hoc Method: Cost Volume Filtering
 - Still making independent decisions at each pixel.
 - Averaging each disparity level promotes disparity maps where values are “equal” not close.
 - If $C[x, y, d]$ is a good match, then $C[x + 1, y, d \pm 1]$ gets no benefit from filtering.
 - Not good for slanted surfaces.
 - Could be fixed by smoothing $\min_{\delta = (-1, 1)} C[x, y, d + \delta]$
- But generally, would prefer expressing this as optimizing a well-defined cost.

GLOBAL OPTIMIZATION

$$d = \arg \min_d \sum_n C[n, d[n]] + \lambda \sum_{(n, n') \in \mathcal{E}} S(d[n], d[n'])$$

- $n = [x, y]^T$ for pixel location.
- C is cost-volume as before. Gives us “local evidence”
- \mathcal{E} is a set of all pairs of pixels that are “neighbors” / adjacent in some way.
 - Can include all un-ordered pairs of pixels with $(x, y), (x - 1, y)$ and $(x, y), (x, y - 1)$ (four connected)
 - Or diagonal neighbors as well.
- S is a function that indicates a preference for $d[n]$ and $d[n']$ to be the same.
GLOBAL OPTIMIZATION

\[d = \arg \min_{d} \sum_{n} C(n, d[n]) + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

- \(S \) is a function that indicates a preference for \(d[n] \) and \(d[n'] \) to be the same.
- Choice 1:
 - 0 if \(d[n'] = d[n] \), 1 otherwise.
- Choice 2: \(|d[n'] - d[n]|\)
- Choice 3:
 - 0 if \(d[n'] = d[n] \)
 - \(T_1 \) if \(|d[n'] - d[n]| < \epsilon \)
 - \(T_2 \) otherwise.

How do we solve this?

Note that this is a discrete minimization. Each \(d[n] \in \{0, 1, \ldots, D - 1\} \).

GLOBAL OPTIMIZATION

\[d = \arg \min_{d} \sum_{n} C(n, d[n]) + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

One approach: Iterated Conditional Modes

- Begin with \(d_0 = \arg \min_{d} C(n, d[n]) \)
- At each iteration \(t \), compute \(d_{t+1} \) from \(d_t \) by solving for each pixel in \(d_{t+1} \) assuming neighbors have values from \(d_t \).

\[d_{t+1}[n] = \arg \min_{d} C(n, d[n]) + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

- So for each pixel,
 - Take matching cost.
 - Add smoothness cost from its neighbors, assuming values from previous iteration.
 - Minimize.

Does it converge?

No Guarantee: We are changing all pixel assignments simultaneously.

GLOBAL OPTIMIZATION

\[d = \arg \min_{d} \sum_{n} C(n, d[n]) + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

Per-pixel Iterated Conditional Modes (slow!)

- Begin with \(d_0 = \arg \min_{d} C(n, d[n]) \)
- At each iteration \(t \), compute \(d_{t+1} \) from \(d_t \) by solving for one pixel in \(d_{t+1} \) assuming neighbors have values from \(d_t \).

\[d_{t+1}[n_{t+1}] = \arg \min_{d} C(n_{t+1}, d_t) + \lambda \sum_{(n,n') \in E_{n_{t+1}}} S(d[n], d[n']) \]

Does it converge?

- Each iteration decreases the cost. So it will converge (but to a local optimum).

GLOBAL OPTIMIZATION

\[d = \arg \min_{d} \sum_{n} C(n, d[n]) + \lambda \sum_{(n,n') \in E} S(d[n], d[n']) \]

- These kind of cost functions / optimization problems are quite common in vision.
- The cost can be interpreted as a log probability distribution:

\[p(d) \propto \prod_{n} \exp(-C(n, d[n])) \prod_{(n,n') \in E} \exp(-\lambda S(d[n], d[n'])) \]

- Joint distribution over all the \(d[n] \) values.
GLOBAL OPTIMIZATION

Joint distribution over all the \(d[n] \) values.

Graphical Model: Probability Distribution Represented as a "Graph" \((V, E)\)

\[
p(v \in V) = \prod_{v \in V} \Psi_v(v) \prod_{(v_1, v_2) \in E} \Phi_{v_1, v_2}(v_1, v_2)
\]

- Unary term for each node, pair-wise term for each edge.

(Directed Graphs represent Bayesian Networks)

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- \((n, n') \in E\) -- pixels are neighbors?

Reminder: Two variables are independent if we can express their joint distribution as a product of distributions on each variable.

GLOBAL OPTIMIZATION

\[
p(d) \propto \prod_n \exp(-C[n, d[n]]) \prod_{(n, n') \in E} \exp(-\lambda S(d[n], d[n']))
\]

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- if \((n, n') \in E\) -- pixels are neighbors

- if \((n, n') \notin E\) -- pixels are not neighbors?

GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- \((n, n') \in E\) -- pixels are neighbors

- \((n, n') \notin E\) -- pixels are not neighbors?

GLOBAL OPTIMIZATION

Question: Are \(d[n] \) and \(d[n'] \) independent if:

- if \((n, n') \in E\) -- pixels are neighbors

- if \((n, n') \notin E\) -- pixels are not neighbors?

Unless \(n, n' \) are parts of disconnected components of graph.
Question: Are $d[n]$ and $d[n']$ independent if:

If $(n, n') \notin E$, "conditioned" on all the neighbors of n being observed, $p(d[n], d[n'][|d[n']])$

YES. This is the Markov property. And these kinds of graphical models are called Markov random fields.

Graph structure encodes "conditional independence".

\[
p(d) \propto \prod_n \exp(-C(n, d[n])) \prod_{(n, n') \in E} \exp(-\lambda S(d[n], d[n']))
\]

Iterated Conditional Modes really slow.

No guaranteed solution for arbitrary graphs.

But could solve it if our graph were a chain (or more generally a tree).

Consider where we optimize each epipolar line separately.
You have costs stored for each individual allocation, as well as cost for edges

\[\sum_x C[x, d[x]] + \lambda \sum_x S(d[x], d[x + 1]) \]

The total cost of those blocks and the edges was the least.

Say we only had two nodes:

\[d_1, d_2 = \arg \min d_1, d_2 \frac{C[1, d_1]}{d_1} + \frac{C[2, d_2]}{d_2} + \lambda S(d_1, d_2) \]

\[d_2 = \arg \min d_2 \frac{C[1, d_1]}{d_1} + \frac{C[2, d_2]}{d_2} + \lambda S(d_1, d_2) \]

This is the \(d_1 \) corresponding to the optimal path

\[\sum_x C[x, d[x]] + \lambda \sum_x S(d[x], d[x + 1]) \]
This is precisely what we computed for the 2 node case. Also note that once you have this, you don’t care about what the value of \(d \) was in the inner minimization.

\[
\sum_x C[x, d[x]] + \lambda \sum_x S(d[x], d[x + 1])
\]

We go from left to right, and doing an arg min on the last \(C \) gives us the disparity of the last node. And then we backtrack to find the full chain.

Store best \(d' \) for each \(d \).

\[
z[x + 1, d] = \arg \min_{d'} \lambda S(d, d') + \bar{C}[x, d']
\]

\[
\bar{C}[x + 1, d] = C[x + 1, d] + \min_{d'} \lambda S(d, d') + \bar{C}[x, d']
\]

Forward

\[
\bar{C}[0, d] = C[0, d]
\]

\[
z[x + 1, d] = \arg \min_{d'} \lambda S(d, d') + \bar{C}[x, d']
\]

\[
\bar{C}[x + 1, d] = C[x + 1, d] + \min_{d'} \lambda S(d, d') + \bar{C}[x, d']
\]

Backward

\[
d[x_{end}] = \arg \min_d \bar{C}[x_{end}, d]
\]

\[
d[x] = z[x + 1, d[x + 1]]
\]
GLOBAL OPTIMIZATION

We could apply this on individual epipolar lines.

That’s why we want to use a full 2D grid.

But forward-backward only works on chains (or graphs without cycles).

One flavor of approximate algorithms apply the same idea of forming a $\tilde{C}[x, d]$

- TRW-S
- Loopy Belief Propagation
- SGM

GLOBAL OPTIMIZATION

Semi-Global Matching

$\tilde{C}[x, d] = C[x, d] + \min_{d'} \tilde{C}[x-1, d'] + \lambda S(d, d')$

This is going left to right in the horizontal direction.

Idea: Compute different \tilde{C} along different directions ...

and average.

GLOBAL OPTIMIZATION

Semi-Global Matching

$\tilde{C}_{lr}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{lr}[n-1, 0, d'] + \lambda S(d, d')$

$\tilde{C}_{rl}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{rl}[n+1, 0, d'] + \lambda S(d, d')$

$\tilde{C}_{du}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{du}[n, -1, 0, d'] + \lambda S(d, d')$

$\tilde{C}_{ud}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{ud}[n, 1, 0, d'] + \lambda S(d, d')$

$d[n] = \arg\min_{d'} \tilde{C}_{lr}[n, d] + \tilde{C}_{rl}[n, d] + \tilde{C}_{ud}[n, d] + \tilde{C}_{du}[n, d]$
GLOBAL OPTIMIZATION

Semi-Global Matching

\[\tilde{C}[x, d] = C[x, d] + \min_{d'} \tilde{C}[x - 1, d'] + \lambda S(d, d') \]

- Consider the case when \(S(d, d') \):
 - 0 if \(d = d' \)
 - \(P_1 \) if \(|d - d'| = 1 \)
 - \(P_2 \) otherwise.
- Can we do this efficiently?
 - Need to go through each line sequentially.
 - But can go through all lines in parallel.
 - But what about \(d \)? Do we need to do minimization for every \(d \) independently?

Note: It doesn't matter if we add / subtract constants to all \(d \)’s:
- \(C[x, d] \) with \(C[x, d] + C_0[x] \)
- \(\tilde{C}[x, d] \) with \(\tilde{C}[x, d] + C_0[x] \)

Why not?
- Because the minimization will always be over \(d \). You are never comparing \(C[x_1, d_1] \) with \(C[x_2, d_2] \).
GLOBAL OPTIMIZATION

\[\tilde{C}[x, d] = C[x, d] + \min_{d'} \tilde{C}[x - 1, d'] + S(d, d') \]

\[S(d, d') = \begin{cases} 0 & \text{if } d = d' \\ P_1 & \text{if } |d - d'| = 1 \\ P_2 & \text{otherwise} \end{cases} \]

- Step 1 (Simplify): Replace \(\tilde{C}[x - 1, d'] \) with \(\tilde{C}[x - 1, d'] = \tilde{C}[x - 1, d'] - \min_{d'} \tilde{C}[x - 1, d''] \)

 What happens then?

What is the MAXIMUM value for \(\min_{d'} \tilde{C}[x - 1, d'] + S(d, d') \) for any \(d \)?

Can do this in parallel with matrix operations for all \(d \) and all lines.

GLOBAL OPTIMIZATION

SGM Algorithm Averages along four directions:

\[
\tilde{C}_{b}[n, d] = (C[n, d] + \tilde{C}_{c}[n, d] + \tilde{C}_{ad}[n, d] + \tilde{C}_{d}[n, d]) + \min_{d'} \tilde{C}_{b}[n - [1, 0]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{c}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{c}[n + [1, 0]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{ad}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{ad}[n - [0, 1]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{d}[n, d] = C[n, d] + \min_{d'} \tilde{C}_{d}[n + [0, 1]^T, d'] + \lambda S(d, d')
\]

Wouldn't this be better?

But then...

GLOBAL OPTIMIZATION

Loopy Belief Propagation (one version)

\[
\tilde{C}_{b}^{t+1}[n, d] = (C[n, d] + \tilde{C}_{c}[n, d] + \tilde{C}_{ad}[n, d] + \tilde{C}_{d}[n, d]) + \min_{d'} \tilde{C}_{b}^{t+1}[n - [1, 0]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{c}^{t+1}[n, d] = C[n, d] + \tilde{C}_{c}[n, d] + \tilde{C}_{ad}[n, d] + \tilde{C}_{d}[n, d]) + \min_{d'} \tilde{C}_{c}^{t+1}[n - [1, 0]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{ad}^{t+1}[n, d] = C[n, d] + \tilde{C}_{b}[n, d] + \tilde{C}_{c}[n, d] + \tilde{C}_{ad}(n, d)) + \min_{d'} \tilde{C}_{ad}^{t+1}[n - [1, 0]^T, d'] + \lambda S(d, d')
\]

\[
\tilde{C}_{d}^{t+1}[n, d] = C[n, d] + \tilde{C}_{b}[n, d] + \tilde{C}_{c}[n, d] + \tilde{C}_{ad}[n, d]) + \min_{d'} \tilde{C}_{d}^{t+1}[n - [1, 0]^T, d'] + \lambda S(d, d')
\]

Do this iteratively

More generally, at time step \(t\), pass a message from node \(n\) to \(n'\), based on all messages \(n\) has at that time, except for the message from \(n'\).

Read more:

GLOBAL OPTIMIZATION

- Other methods for discrete minimization—based on "Graph Cuts".
- SGM / Loopy BP: Generalize that there is an exact solution for a chain.
- Graph Cuts (with expansions / swaps): Generalize that there is an exact solution if only two values of \(d\).

http://vision.middlebury.edu/stereo/