CSE 559A: Computer Vision

Fall 2020: T-R: 11:30-12:50pm @ Zoom

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Course Staff: Adith Boloor, Patrick Williams

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Oct 27, 2020
GENERAL

- Problem Set 2 Due 11:59pm tonight.
- Problem Set 3 out and ready to clone.
- Proposal repository ready to clone.
- New office hours after lecture (starting at 1pm Central time).
 - Separate Zoom link available through Zoom tab in Canvas.
Notes on Problem Set Submissions

- Don’t forget to include your solution writeup PDF!
- Make sure its called solution.pdf.
- As you solve questions, don’t just read the minimum required to solve the problem.
 - Make sure you understand the underlying math.
 - Go back and read previous slides to see how things were derived.
 - Refresh your memories of linear / matrix algebra identities.
- Take academic integrity seriously
LAST TIME: ROBUST FITTING

Iterative Version:

\[h = \arg \min_h \sum_{i \in C} \min(\epsilon, E_i(h)) \]

1. Fit the best \(h \) to all samples in full set \(C \).
2. Given the current estimate of \(h \), compute the inlier set \(C' = \{ i : E_i(h) \leq \epsilon \} \)
3. Update estimate of \(h \) by minimizing error over only the inlier set \(C' \)
4. Goto step 2
 - Converges, because cost never increases at any iteration.
 - But to a local minimum. It is possible that if you chose an entirely different inlier set, this would give you a lower cost.

Fundamentally a combinatorial problem. Only way to solve exactly is to consider all possible sub-sets of \(C \) as outlier sets.
RANSAC

Random Sampling and Consensus

Lots of different variants.

1. Randomly select k points (correspondences) as my inlier set.
 - Choice of k can vary: has to be at least 4 for computing homographies.
2. Fit h to these k points.
3. Store h and a measure of how good a fit h is to all points. This measure can either be the thresholded robust cost, or the number of outliers.

Repeat this N times to get N different estimates of h and associated costs.

Choose the h with the lowest cost, and then use this as initialization for the iterative algorithm.
3D HOMOGENEOUS CO-ORDINATES

- Four dimensional vector defined upto scale: \(p = [\alpha x, \alpha y, \alpha z, \alpha]^T \)
- If \(l \) is a four-dimensional vector, what does \(l^T p = 0 \) represent?
3D HOMOGENEOUS CO-ORDINATES

- Four dimensional vector defined upto scale: \(p = [ax, ay, az, \alpha]^T \)
- If \(l \) is a four-dimensional vector, what does \(l^T p = 0 \) represent? A plane.
- How do we represent a line?
3D HOMOGENEOUS CO-ORDINATES

- Four dimensional vector defined upto scale: \(p = [ax, ay, az, \alpha]^T \)
- If \(l \) is a four-dimensional vector, what does \(l^T p = 0 \) represent? A plane.
- How do we represent a line? \(L^T p = 0 \) where \(L \) is a \(4 \times 2 \) matrix.
- Interpret line as intersection of two planes.
3D TRANSFORMATIONS

Represented by 4×4 matrices.

- Translation

\[
p' = \begin{bmatrix}
1 & 0 & 0 & -c_x \\
0 & 1 & 0 & -c_y \\
0 & 0 & 1 & -c_z \\
0 & 0 & 0 & 1
\end{bmatrix} p
\]
3D TRANSFORMATIONS

Represented by 4×4 matrices.

- Rotation

\[p' = \begin{bmatrix} R & 0 \\ 0^T & 1 \end{bmatrix} p \]

Where R is now a 3×3 matrix with $R^T R = I$.

Also covers reflection. For rotation only, $R = R_x(\theta_1)R_y(\theta_2)R_z(\theta_3)$

\[
R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, \quad R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}, \quad R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

Corresponds to rotation around each axis. Not commutative.
General Euclidean Transformation

\[p' = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} p \]

Now \(R \) is a \(3 \times 3 \) rotation matrix, and \(t \) is a \(3 \times 1 \) translation vector.
Projection for co-ordinates on Sensor

\[p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]
Sensor to Image Locations

\[p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]
Sensor to Image Locations

\[p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]
Sensor to Image Locations

\[p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]
Sensor to Image Locations

\[
p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ p'
\]
CAMERA PROJECTION

Sensor to Image Locations

But then, the image formed on the sensor is flipped before we see it as an array.

\[
p = \begin{bmatrix}
 -f & 0 & 0 & 0 \\
 0 & -f & 0 & 0 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix} \cdot p'
\]
Sensor to Image Locations

But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

$$p = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p'$$
Sensor to Image Locations

But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

\[p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]

(You'll see both versions in different textbooks/papers)
Sensor to Image Locations

But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

$$p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p'$$

(You'll see both versions in different textbooks/papers)
But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

\[p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]

(You'll see both versions in different textbooks/papers)
Sensor to Image Locations

But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

\[
p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p'
\]

(You'll see both versions in different textbooks/papers)
Sensor to Image Locations

Think of the sensor plane as being in front of the pinhole, and the image is what you "frame" on that plane.

But then, the image formed on the sensor is flipped before we see it as an array.

So factoring that in (and assuming the y-coordinate increases from bottom to top).

\[
p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p'
\]

(You'll see both versions in different textbooks/papers)
CAMERA PROJECTION

Sensor to Image Locations

\[
p = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p'
\]

- This still assumes that \(p' \) and \(p \) share the same co-ordinate system.
- What units is \(p \) in? What units is \(f \) in?

Meters to Pixels

- Location on sensor plane in meters: \(x'_m = f \frac{x}{z} \)
- Let’s say each sensor pixel is \(q \) meters wide.
- Location in ‘pixels’ is \(x_p = x'_m/q = \frac{f}{q} \frac{x}{z} \)
- Or can just assume \(f \) is focal length in pixels.
CAMERA PROJECTION

\[p = \begin{bmatrix} f_x & s & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} p' \]

More General:

- \(f_x \neq f_y \) handles the case where pixels aren’t square (so you have \(f \) in meters divided by sensor width and sensor height separately).
- \(s \neq 0 \) implies the pixels are skewed (almost never happens).
- \(c_x \) and \(c_y \) just picks the location of origin on the image plane.

Often, ok to assume \(s = 0, f_x = f_y = f, c_x = W/2, c_y = H/2 \).
CAMERA PROJECTION

\[
p = \begin{bmatrix} f_x & s & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} p' \end{bmatrix}
\]

Still assumes that \(p' \) is with respect to an “aligned” co-ordinate system:

- Camera center (pinhole) is at origin
- \(x \) and \(y \) axes aligned with sensor plane
- \(z \) axis is viewing direction
CAMERA PROJECTION

\[p = \begin{bmatrix} f_x & s & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

Still assumes that \(p' \) is with respect to an “aligned” co-ordinate system:

- Camera center (pinhole) is at origin
- \(x \) and \(y \) axes aligned with sensor plane
- \(z \) axis is viewing direction

\[K = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \]

The \(3 \times 3 \) matrix \(K \) is called the intrinsic camera matrix.
CAMERA PROJECTION

- But what if p' is in some other co-ordinate system?
 - Calibration target (trying to estimate camera parameters)
 - Multi-view Scenario
- Define p'' and p' are 3D homogeneous co-ordinates:
 - p'' is in camera aligned axes, p' is in world axes
 - Both are related by a euclidean / ‘rigid’ transformation (rotation + translation)

$$p'' = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} p'$$

Where R is 3×3 3-D rotation matrix, and t is 3×1 translation vector.

$$p = [K \ 0] \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} p' = K \ [R|t] \ p' = Pp'$$

The projection matrix P can be factorized into the upper triangular matrix 3×3 intrinsic matrix K, and the 3×4 extrinsic matrix $[R|t]$ that represents camera “pose”.
CAMERA CALIBRATION

\[p = [K \ 0] \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p' \end{bmatrix} = K \begin{bmatrix} R | t \end{bmatrix} \begin{bmatrix} p' \end{bmatrix} = Pp' \]

- \(P \) defined upto scale.
- Get a bunch of 3D-2D correspondences \((p'_i, p_i)\)
- Solve for \(p_i \times (Pp'_i) = 0 \) like for Homographies
- Except that now \(P \) is a \(3 \times 4 \) matrix instead of \(3 \times 3 \)
- Need six linearly independent points (three if \(K \) is known).

Once you have \(P \), can decompose into \(K \) and \([R | t] \) using QR factorization
- Restricted versions possible if you assume no skew, square pixels, etc.
• \(P = K[R|t] \) describes projection from calibration object’s co-ordinate system

• Many times we just want to estimate \(K \) (or estimate it separately before estimating pose).

• Assume square pixels, no skew, optical center at center of image.

\[
K = \begin{bmatrix}
 f & 0 & W/2 \\
 0 & f & H/2 \\
 0 & 0 & 1
\end{bmatrix}
\]

Is there a simpler way to get \(f \) ?
Vanishing Point
Vanishing Point

Camera Center

Sensor Plane

Line in the World
Vanishing Point

Camera Center

Sensor Plane

Line in the World
Vanishing Point
Vanishing Point

Camera Center

Sensor Plane

Line in the World
Vanishing Point
Vanishing Point

Camera Center

Sensor Plane

Line in the World
Vanishing Point

Camera Center

Sensor Plane

Line in the World
CAMERA CALIBRATION

Vanishing Point

Line appears to "end" at a point in the image plane

Camera Center

Sensor Plane

Line in the World
Vanishing Point

Line appears to "end" at a point in the image plane

And that point is the intersection of the image plane, and a line parallel to the line in the world, going through the camera center

Camera Center

Sensor Plane

Line in the World
Vanishing Point

- Line appears to "end" at a point in the image plane.
- And that point is the intersection of the image plane, and a line parallel to the line in the world, going through the camera center.
- All lines parallel to each other in the world, will share (i.e., intersect at) the same vanishing point.
Vanishing Point

Line appears to "end" at a point in the image plane.

And that point is the intersection of the image plane, and a line parallel to the line in the world, going through the camera center.

All lines parallel to each other in the world, will share (i.e., intersect at) the same vanishing point.
CAMERA CALIBRATION

Vanishing Point

Alternate equation of line in 3D:

In 3-D cartesian, all points \(r \) that satisfy for some scalar \(\lambda \):
\[
 r = r_0 + \lambda d,
\]
where

- \(r_0 \) is a 3-vector representing the cartesian co-ordinate of a point,
- \(d \) is a 3-vector representing “direction” of line,
- Same \(r_0 \) and different scaled versions of \(d \) represent same line.
- Two lines with different \(r_0 \) but same \(d \) (upto scale) are parallel to each other.
- \(r = \lambda d \) represents parallel line passing through origin.

In homogeneous co-ordinates, \(p = [(r_0 + \lambda d)^T, 1] = [(\frac{1}{\lambda} r_0 + d)^T, \frac{1}{\lambda}] \)

Projection \(\tilde{p} \) of \(p \) (assuming camera-aligned co-ordinate system):
\[
 \tilde{p} \sim [K \ 0] p = Kr_0 + \lambda Kd \sim \frac{1}{\lambda} Kr_0 + Kd
\]
Vanishing Point

Projection \tilde{p} of p (assuming camera-aligned co-ordinate system):

$$\tilde{p} \sim [K\ 0]p = Kr_0 + \lambda Kd \sim \frac{1}{\lambda} Kr_0 + Kd$$

- As $\lambda \to \infty, \tilde{p} \sim Kd$
- Kd is the 2D homogeneous co-ordinate of the projection of the point on the given line at infinity. It is the projection of all points on the line parallel to the given line and passing through origin / camera center (same $d, r_0 = 0$).
- d represents a ray in \mathbb{R}^3. All points in parallel line through origin have co-ordinate $[d^T, 1/\lambda]$ for some λ, and all project to Kd.
- Note that vanishing point will be at infinity if z-component of d is 0, i.e., if line in 3D space is perpendicular to camera axis.
CAMERA CALIBRATION

Vanishing Point

- \(p \sim Kd \Rightarrow K^{-1}p \sim d \)
- If \(p \)'s cartesian co-ordinate is \((x, y)\), for simple \(K \):
 \[
d \sim K^{-1}p \sim \begin{bmatrix} (x - W/2) \\ (y - H/2) \\ f \end{bmatrix}
 \]

So I can write an equation relating \(d \) to the co-ordinate of it's vanishing point and unknown focal length \(f \).

But I don’t know \(d \).

But what if I knew that \(d_1 \) and \(d_2 \) were perpendicular (in the real world)?
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other
CAMERA CALIBRATION

Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)
Vanishing Point

Find two sets of lines where:
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)
CAMERA CALIBRATION

Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)

\[d_1 \sim K^{-1} v_1 \]
Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)

\[d_1 \sim K^{-1}v_1 \]
\[d_2 \sim K^{-1}v_2 \]
CAMERA CALIBRATION

Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)

\[d_1 \sim K^{-1}v_1 \]
\[d_2 \sim K^{-1}v_2 \]
\[d_1^T d_2 = 0 \]
CAMERA CALIBRATION

Vanishing Point

Find two sets of lines where
- All lines in each set are parallel to each other
- Lines in different sets are perpendicular to each other

Find vanishing point for each set by finding intersection of lines (intersection might be outside image)

\[d_1 \sim K^{-1} v_1 \]
\[d_2 \sim K^{-1} v_2 \]
\[d_1^T d_2 = 0 \]

Solve for focal length.
What can we say about the relationship between \tilde{p}_1 and \tilde{p}_2, and what does it say about p?

$\tilde{p}_1 \sim K_1[R_1|t_1]p$

$\tilde{p}_2 \sim K_2[R_2|t_2]p$
TWO-VIEW GEOMETRY

\[
\tilde{p}_1 \sim K_1 [R_1 | t_1] p, \quad \tilde{p}_2 \sim K_2 [R_2 | t_2] p
\]

Let’s just assume \(K_1 = K_2 = K \),

and the co-ordinate system is aligned with the first camera: \(R_1 = I, t_1 = 0 \).
TWO-VIEW GEOMETRY

\[\tilde{p}_1 \sim K[I|0]p, \quad \tilde{p}_2 \sim K[R|t]p \]

What if \(t = 0 \)? Second image is from just rotating the camera, but not moving its center.

Let \(p = [x, y, z, 1] \). We’re going to deal with \(\sim \) by saying equal to some scalar factor \(\lambda_1, \lambda_2, \ldots \)

\[\tilde{p}_1 = \lambda_1 K[I|0]p = \lambda_1 K[x, y, z]^T, \quad \text{for some } \lambda_1 \]

\[\tilde{p}_2 = \lambda_2 K[R|0]p = \lambda_2 KR[x, y, z]^T, \quad \text{for some } \lambda_2 \]

\[\tilde{p}_2 = \frac{\lambda_2}{\lambda_1} K R K^{-1} \tilde{p}_1 \sim K R K^{-1} \tilde{p}_1 \]

So if there’s only rotation, points in two images can be related by a Homography = \(K R K^{-1} \).
TWO-VIEW GEOMETRY
TWO-VIEW GEOMETRY
Mapping doesn't depend on depth if only rotation.
Will depend with translation.

Mapping doesn't depend on depth if only rotation.
TWO-VIEW GEOMETRY
TWO-VIEW GEOMETRY
Point in the world can lie anywhere on this line
Point in the world can lie anywhere on this line.
Point in the world can lie anywhere on this line
Point in the world can lie anywhere on this line

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Point in the world can lie anywhere on this line

All points in this picture lie on a plane.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Point in the world can lie anywhere on this line.

All points in this picture lie on a plane.

The point in the world must lie on the same plane as the two camera centers, and the point on the image plane.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
All points in this picture lie on a plane.

The point in the world must lie on the same plane as the two camera centers, and the point on the image plane.

The epipolar line is the intersection of this plane with the second camera's sensor plane.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Point in the world can lie anywhere on this line.

The image of the first camera's center in the second camera, will lie on this line.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Point in the world can lie anywhere on this line.

The image of the first camera's center in the second camera, will lie on this line.

It will lie on all lines. Called the epipole.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
TWO-VIEW GEOMETRY

The image of the first camera's center in the second camera, will lie on this line.

It will lie on all lines. Called the epipole.

Visibility constraint: point could only have been infront of camera center.

Implies point can only be on one side of epipole.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
All possible points lie on a line. This is called the epipolar line corresponding to the point.
For any of those points on the right image, there is a corresponding epipolar line in the left. All possible points lie on a line. This is called the epipolar line corresponding to the point.
For any of those points on the right image, there is a corresponding epipolar line in the left.

And all points on that line will match to the same epipolar line on the right.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Epipolar Geometry: Lines Match to Lines

For any of those points on the right image, there is a corresponding epipolar line in the left.

And all points on that line will match to the same epipolar line on the right.

All possible points lie on a line. This is called the epipolar line corresponding to the point.
Epipolar Geometry: Lines Match to Lines

All Epipolar Lines go through the Epipoles

For any of those points on the right image, there is a corresponding epipolar line in the left.

And all points on that line will match to the same epipolar line on the right.

All possible points lie on a line. This is called the epipolar line corresponding to the point.