An Effective Network Processor
Design Framework - Using Multi-
Objective Evolutionary Algorithms and
Object Oriented Techniques to
Optimise the Intel IXP1200 Network
Processor

Liam Noonan, Dept E&CE University of
Limerick

Colin Flanagan, Dept E&CE University of
Limerick

\

TY of LIMERICK i TIPPERARY
v '“teL INSTITUTE

introauction

In this presentation we present a framework for design space exploratiol
of a network processor, that incorporates parameterisation, power and
cost analysis.

This method utilises multi-objective evolutionary algorithms and object
oriented analysis and design.

Using this approach an engineer specifies certain hard and soft
performance requirements for a multi-processor system, and allows it to
be generated automatically by competitive evolution/optimisation, thus
obviating the need for detailed design.

To make the proposal concrete, we use the Intel IXP1200 network
processor as a baseline complex system design and show how various
improvements can be make to this architecture by
evolutionary/competitive design.

Various approaches to multi-objective optimisation (Darwin, Lamarck
Baldwin, etc.) are compared and contrasted in their ability to generate
architectures meeting various constraints.

ne needq 10r speea

Network processors are high performance programmable
processors that are optimised to process packets.

In order to provide high rates of packet processing, NPs have
typically adopted a strategy of distributed processing and
parallelism.

This programming model on paper is very effective, however
In practice it can be difficult to implement and debug.

This is due to its inherent complexity; designing a network
processor can involve the optimisation of many component
devices and subsystems.

The first generation of network processors utilised a great
number of different approaches, which made assessment of
the technologies a complex issue.

'ne cnailienge

The challenge facing industry is to develop innovative
products of increasing complexity within shorter design
times. Decisions made at an early stage can have later
repercussions.

These early decisions can affect the over all performance of
the system.

Are these architectures a good fit to the real problem?
How do we discover this and improve the design?

There is a need for an architectural exploration tools that cat
assess the performance of various designs.

This tool should utilise proven software modelling and
development techniques.

ne Trramework

Utilises a flexible object oriented model of a NP. The model is constructe
using UML and implemented using the object oriented modeling languag
POOSL

User-supplied parameters allow the designer to describe the
manufacturing process and microprocessor characteristics in great detail

Various evolutionary algorithms are employed to generate configurations
from randomly initialised search spaces, or to attempt to improve user-
supplied configurations

Multi-objective fitness criteria based on empirical calculations and analys
(e.g., chip area, power consumption, cost per die) are utilised

The result is a configuration description of the multi-core microprocessor
that provides details on the bus widths, speed of processing units and
chip area.

We believe that the combination of features offered in this framework
will provide significant assistance to system architects and designers.

A compiex network processor

Intel® JTAG
StrongARM* & Khiyta I—l
Core 16 Khiyla || Doache Bel Unil
lcacha < okt bk
Intel 512 Byla
StrongaRM Mini-Deache
41 Core =
[Fead Butter] | | * *
i
A :
UART £ Timers . |
GPIO RTC [W-"") EE T 4--3 SDRAM Unit {3@
-4 A A5
bt bus SRAM Unit o
E Micro- Micro- Micro-
! englne engine emgine
§ 1
FEI Unit -
Scratchpad i Al A Al A Al A
hemory
(4 Kbyta)
“Hash Unil_ | € *
:: E) ¥ Bus
&4-hit bus >] iriedaca Y|y .; ¥ Y|y
Micro- Micro- Micro-
englne engine amging
4 5 6
Noles: Intel IXP1200 Metwork Processor

= 32-bit Dala Bus
=== 32-bit ARM System Bus

Language neview

The design exploration tool should allow the engineer th
facility to quickly and easily modify the architecture of th
network processor and assess the implications of thi
modification.

If the tool has been appropriately designed, it should b
possible to target other architecture families.

With this in mind, we conducted a review of the languag
alternatives that were available to us.

ROOM

SDL

Esterel

SystemC

C++

POOSL

'ne aecision

A design exploration tool should utilise a
language/methodology that offers concurrency,
communication, data types, timers and probabilistic
functionality.

There is a requirement for asynchronous processes,
conditional message passing and sharing of data objects
between concurrent activities.

The language should offer an intuitive interface with low-
level trace and debug tools, as well as the facility of object
and code reuse.

Furthermore the language should be an OO language as this
facilitates the independent modelling of specific components
and code reuse.

Language should support UML 2.0
We chose POOSL as it met the above criteria.

VoL

Based upon smalltalk
Utilises Mathematically defined semantics
Consists of a process part and data part

System level model consists of:
Process, cluster and data objects

Analysing tne rrooiem

Before construction of the model was attempted a flow
diagram was constructed so as to provide an overview of the

system.

This allowed assessment of the various components that
were required as well as the sequence in which they
occurred.

This approach also highlighted the various parallel
asynchronous processes that were required as well as the
process classes in which they would reside.

riow/rign ieveil seq adiagram

(A Sl L e HBELS | | ricrosnoine | | SRAM | | SDREAAMR

1
1 *mpAonitor inpu‘t buffers0)
2. Accept MBpkt() 1
Z* Poll RBE

: S 1 Send Row Ry Elrts()

A0l operastions
that are precesded
wwith an asterisk
indicate =
periodic
process

.1 .1 bonitor Row FRdy Brts() 1

= ‘1 1 A konitor Rcow Rdy Bit=0)

> 4 = et Packetol

S = honitor Receive Regquest=)

l

=1 Accept Rec Reqo)

'
S.1 .1 TransTter Mpkt to RFIFC)
I -l

I *1
S.1.1 .1 Accept Mpkt from =P ka0
—=] |

5.1.2 Get Mpkt RFIFO Loc
—

> B * RFIFC to SDRSRIC)
1 1

7.1 Allocate SDFRAR Loci()
I]

I 1
T Set SDRARM Loc()
]

V.2 Transfer Mpkt from RFIFO to SODRAR oo

Thi=s i= repeastely call&s
urtil all mpackets T2 scocept Mpkt()
belonging to the T R e Lo s oE Lt

packet hawve
been received.

’L: o~ F'rcn:ess Packestl)
N ;
'

—_
.1 Mext Packet from SDRARM
I - |

|
5.2 Accept SDRARM Loc

1
.53 SDRARM Read()

i
8581 SDRARM Datad)
\

> ©.4 Process Packet Contents
;

5.5 SDRAR Write)

.
.51 SDRARM Updsted()

rign ievel impiementation ciass diag

1
Source IXPMAC IXEUS MicroEngine SORAM
1 irt Hoapacty | int (Db - Boolean HhutferCapaciy ; int RbufferCapacity © int

~apacity © float

{: flost
anBurstsize : flost
ketGap ; flost
_encth :irt

roe int

tehSize :int

)

]

lize()

2stination '
apacity | fioat|

Whebuy : Boolean
WDebugTranzmit . Boolean
WinputRate | flost
EIHPMachumber © int
Rmyld - String
nicBandwidth : int
goutputRate | float

iransmitFifoSize | int

FacceptPackets()
LacceptPacketzFromTiifol)
Hnitialize!)

FmonitarRBS)

[bmonitorXmitRoyBits))

FpushRovRdyBits()
FoushEmitRdyBits()
FeendPacketzOut))

FeendPacketzToRfifal)

. Siring
mtPackets()
izel)

1.8

1.8

FDebugTfifo ; Boolean
FDebugTransmit : Boolean
Lyl - String
FedramDebugy © Boolean

Fdespatchi)
Hritislizel)
HnitislizeTfifoArray()
HitPowwerbonitor)
FopolllXPhiac))
FpollFcvRdy)

polRcyReg)
FpoliRfifoToSdramBeq()
FpollTfifaPtrCuery)
Lol alicste TfitfoReq)
FpolbAtite T fifoReql)
ool mitRcdy ()
Fpowverhdonitar)
LrecordlXStall])
FefifoToSdrami)
HfifoTol<P()
HranzferBooleanirray))
HransferMpacketTaRfifal)
LvalickateTfitol)
LaeriteTfifol)

FDebug : Boolean
FDebugcueues | Boolean
FDebugRcyRdy : Boolean
| DebugReceive | Boolean
FDebugSdram . Boalean
FDebugThresds : Boolean
FDebugThread=elect © Boolean
FDebugTransmit : Boolean
wme © int

Freeld - String
ErumteThreads @ int

rotevivait()

Hnitialize)
HnitPovwverMonitor])
HnitsystemParama)
Hnit ThreadStatus])
Foethpacket()
FgetPacket()
Fpoll&rbiterReguests()
Fpowwerhonitar)
Frecord=tall)

Frecard i)
FeelectAnather ThreadonhED
F=ignal)
Hhreadarhiter()
Hhreadt ()

Hhread2()

Hhreadal)

Hhreadd()
HranzmitPacket

FUEngine)

-DebugReceive | Boolean
-DebugTransmit | Bodlean

-initializel)

load=dramConfigl)
-pollSdramCheckContents()
-poll=dramBemoyel)
HranzferToSdrami)

SRAM

WhutferCapacity © int
wDebugReceive | Boolean

WhebugTranzmit : Boolean
1

Hnitializel)
Hoad=ramCanfigl)
FpolMebemalioz)
FHooll=ramueusAdd()
Fool=ram2lockuery
FpollSram2lockSet)
Fooll=ram2oueueRemavel)
Foolsram2oueuesizel
FaramGueuetgmis)

uE" uE2 uEl uE4 uEs ueb

-initializel)
-thread1()
-thread2()
_thread3i

-thread1()
thread2()
-threadal)
_threaddi

-initialize])
-thread1()
thread2()
thresd3i

-threadi ()
-thread2()
-threacd 3
_threaddi

-thread1()
thread2()
-thread3)
_threaddi

Hhreadt ()
Hhread2()
Hhread3)
Libireadd(

wvioaeliing tne NF - processes

Translating the network processor model into POOSL synta
was achieved through the identification of process and dat
classes.

The process classes in general reflected the individus
hardware components of the NP (network processor). |,
superclass and polymorphism was utilised so as t
iImplement generic Microengines that implemented specifi
function calls in the threads.

SDRAM, SRAM etc were modelled as separate classes

wvioaeliing tne NF — data & ornEsim

The data classes that were used to represent packets,
Mpackets, storage etc were able to make full use of and
exploit polymorphism and inheritance.

The methods from the base class were available to all classe
that inherited from them and this aided in the rapid
prototyping of the NP.

SHESIm is a graphical tool intended for incremental
specification and modification of POOSL models that can be
validated by interactive simulation

The process and data layers of a model are denoted in
textual form, whereas the architecture layer is specified
graphically.

The numerous inspection possibilities and the user-friendly
graphical interface make SHESIim very suitable for revealing
model inadequacies

srnEoim Environment

ESim System Lewel Editor

=]

LClazz Definitions Scenariox Options |nteraction Diagrams About
ST ot 51 7 Hfifa
msg of 31 o rfifo [SRAM o]l
- -
[HirZs I i
msg of 52 =3 i [msy off fifo
i
in3s mgg of fhi
msg of 53
[54 oug S
sS4 out f i
inds
msg of 54
55 f
(35 ougd = b tfifo [srarBis
msg of 35 =6 msg of sramBus
u ms e Hin7 s msg of arbChnl
T =l :
5B out f Nirdis =) =) . arbChnl
msg of 58 ix1 in
me [il 0 fhi
0 _I'nsg of uE1 uE1 arb [- Oime
[ot B2 sdrard] "
in 0 Haut1 . ddram Arbiter
msy of D01 o2 Dix3
[ol 22 s S
h out2 ixd
msg of 02 =)
D3 .
Jixs srarm
o g otoa , [0 - 0 i arb [
in 0 Haouta Hdram
msg of D4 D5 Dix7 EdrarmBus
Houts
msg of D5 DE sy of sdramBu X4
_7]%16 o 0 fhi Sram
ir ms o D7 Hout? 3 Usdrarm
e
[
"—msy of DG ot me [0 i =
i sram
uE4 h i
0 sdram 2
T
il ns
fhi uEs SEM
SORAM 0 sdram
T
0 fhi sram
uEG
sram ddram arb [
l sdramCheck

msg of sdramCheck

viodel rarameters

The ability to change the width of data buses and the size of
data storage provided a level of simulation that was not
previously available for the IXP1200.

Debugging was also added so as to examine in detail all
aspects of the mpacket flow through the various
components.

IXBUS
(from Process classes)

*hatchSize
*coreProcessorSpeed
*debug
®internalBusWidth
*ixBusWidth
®ixProcessorSpeed
*macProcessorSpeed
*myld
*sdramBusWidth
*sdramDebug
*sramBusWidth

comparison or intel and ruoJvoL

Intel POOSL % Diff Intel POOSL % Diff
ME IX In In Out Out
177 66 504 515 2.18 504 500 -0.79
177 80 526 544 3.42 525 525 0
177 104 524 579 10.49 523 567 8.41
200 66 504 519 2.97 504 506 0.39
200 80 526 548 4.18 525 534 1.71
200 104 524 581 10.87 524 570 8.77
232 66 553 520 -5.96 552 512 -7.24
232 80 608 548 -9.86 607 535 -11.86
232 104 647 583 -9.89 646 571 -11.6

The Intel developer workbench was configured to run at wire speed usin
64 byte packets so as to gauge the ability of the IXP1200 to perform
under heavy packet loads.

The assessment of accuracy of the model was based upon on how close
the measurements for receiving and sending at the IX interface
corresponded to the Intel workbench results

Jeltermining tne N core conrtig

The designers develop a parameterised POOSL model of the proposed
application in terms of packet processing actions.

The parameters that can be modified include system speed various
components as well as bus widths, this allows the designers to assess th
change in performance characteristics due to a change in model
parameters.

The designers decide on the criteria to be optimised. Cost, throughput
etc.

The genetic algorithms determine the parameter values for the POOSL
model.

The POOSL model is then executed and the outputs from the model are
utilised in fitness functions. Population sets are created and evolutionary
processes are applied

The configuration that produces the best fithess function is identified as
the optimal configuration

UA encodaing

GA's encode using chromosomes.

The chromosomes are either single bits, or blocks of adjacer
bits, that encode a particular element of candidate solution
e.g., an integer value.

The target NP is encoded using 7 chromosomes of type
integer, which are listed in the table below.

Chromosome Description

0| IXBus Width
1|Internal Bus Width
2|SDRAM Bus Width
3[SRAM Bus Width
4/MAC Processor Speed
5
6

IX Processor Speed
ME Processor Speed

LOITIPArioOInl OF INICt 10 ya geoilicraicu
configs

Intel Darwin Lamarck Baldwin
Cost Per Die 70.6 [7.98 158.68 21.75
Power {Watts) 2.48 1.50 1.23 1.31
Throughput 95 95 08 a5
Over all Fitness 0.51 0.79 0.52 0.80
ME Mhz 232 137.9 143.3 136.2
IX Mhz 104 132.64 110.2 111.2
Mac Mhz 104 132.64 319.3 232.6
Internal Bus Width 32 N) 16
IX Bus Wdth 64 BE 24 40
SDRAM Bus Wdth 64 5) 8
SRAM Bus Wdth 32 8 8 8
Die Size (mm) 126 8337 83.31 02.64

Tabu was applied to the above configurations.
The generated configurations were better, but usually except for the Intel
configuration the percentage gains in fitness were negligible.

oeneration Analysis

1

0.8 s — :
{E DE | semm Ealdv.hrln
c _;,f” Darwin
= 0.4 -
i — Lamarck
0.2 +
ﬂ rTrr1rr1r1r1r1r1rrTTrTTrTTTT TTT TTTTITITTI

NG 9o A D P D

Generations

What can be observed from this chart is the fact that significant
improvements are made within the first 16 generations of the process,
after that point the gains reduce dramatically in value.

By the time generation 22 is processed the improvement in the fitness is
negligible. The latter end of this process recorded a very small value for
the standard deviation for the mean fitness of a generation

rroposea Gonrigs

What is interesting to note about the above results are that the proposec
configurations from the various approaches are not identical.

This implies that the algorithms have utilised the random search space ir
a broad but effective manner.

The decision as to which configuration should be utilised rests with the
designer.

This approach offers the design team a choice of architectures for them
to consider and further analyse.

The three approaches have however, highlighted a common design
theme. Cost and power savings can be achieved by increasing the clock
speeds of the IX and MAC units and reducing the microengine clock
speeds and various bus widths.

This requires an “island clocking" policy that allows for components to ru
at separate clock speeds, as well as handshaking logic to allow message
passing between clock islands.

The evolutionary approaches identified the real bottleneck in the system
i.e., the IX and Mac units. It is more apparent when the complete OO
sequence diagram for sending and receiving a packet is analysed.

1Isiana versus vommon CioCKing

IX and MAC IX and MAC
island clocking common clocking
ME Mhz 190 194
IX Mhz 178 203
Mac Mhz 431 203
Int Bus) 8
IX Bus 16 24
SDRAM Bus 8 L6
SRAM Bus 8 8
Cost Per Die 248 253
Throughput 93 95
Power { Watts) .75 .51

Above config is for a 44 signature detecting NDS

There are some notable differences in the two architectures with respect
to bus widths.

The difference in cost (2%) and power (3.4%) is marginal however.

This small extra cost would be well worth considering as it simplifies the
overall design of the NP

LONCIUSIONS

The possibilities for utilising a design exploration framework that employ:
multi-objective evolutionary algorithms with a parameterised Object
Oriented model are encouraging.

The parameter-driven nature of the POOSL model allows one to alter
significantly the behaviour of the IXP1200 and quickly assess the impact
of this configuration change.

This feature has been exploited successfully by the multi-objective
evolutionary algorithms.

Improvements to the architecture from a cost and power consumption
point of view have been achieved.

Comparisons across a broad range of scenarios for a proposed
architecture have also been assessed.

The approach offers the design team a choice of performance-evaluated
architectural alternatives for them to consider, along with a rapid and
objective way to identify potential performance bottlenecks.

This helps to turn computer architecture from an art to a quantifiable
science.

