Commonly Used Formulae

Series

1. Arithmetic Series
 \[\sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \]

2. Sum of squares
 \[\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \]

3. Sum of cubes
 \[\sum_{k=1}^{n} k^3 = \frac{n^2(n + 1)^2}{4} \]

4. Geometric series
 \[\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1} \]

5. Geometric series with \(|x| < 1\)
 \[\sum_{k=0}^{\infty} x^k = \frac{1}{1 - x} \]

6. Harmonic numbers
 \[H_n = \sum_{i=1}^{n} \frac{1}{i} = \ln n + \Theta(1) \]

Probability

More background on probability in Appendix C.2 of the textbook.

1. Definition of expectation.
 \[E[X] = \sum x \Pr\{X = x\} \]
2. Linearity of Expectation
\[E[X_1 + X_2] = E[X_1] + E[X_2] \]

3. If \(X_1 \) and \(X_2 \) are independent,
\[E[X_1X_2] = E[X_1]E[X_2] \]

4. Markov’s Inequality
\[\Pr\{X \geq a\} \leq \frac{E[X]}{a} \]

5. If \(X \) is an indicator random variable
\[E[X] = \Pr\{X = 1\} \]

Other Useful Inequalities

1. Stirling’s approximation
\[n! \leq \left(\frac{n}{e}\right)^n \]

2. \(\binom{n}{k} \) notation (called \(n \) choose \(k \)):
 Given a set of \(n \) distinct elements, \(\binom{n}{k} \) represents the number of
 distinct \(k \) element subsets of this set. In other words, it is the number of ways of choosing \(k \) elements
 from a given set of \(n \) distinct elements. If \(n \) and \(k \) are non-negative and \(k \leq n \), then
 \[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]

3. For \(k \leq n \),
\[\binom{n}{k} \leq \frac{n^k}{k!} \]

4. For \(k \leq n \),
\[\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{ne}{k} \right)^k \]

5. Taylor series expansion for \(e^x \)
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \]

6. Taylor series expansion for \(\ln(1 + x) \)
\[\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \]
7. Useful inequality for small t.

$$e^t \geq 1 + t$$

8. For positive t, n

$$\left(1 + \frac{t}{n}\right)^n \leq e^t \leq \left(1 + \frac{t}{n}\right)^{n+t/2}$$

The above inequality also holds for negative t if $n \geq 1$ and $|t| \leq n$.

Asymptotic Notation

For any $\varepsilon > 0$ and any $k, n^\varepsilon = \omega(\log^k n)$.