LAN Switching and Traffic Classes

Raj Jain
Professor of Computer and Information Sciences

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
MBone Instructions

- Handouts for the class are available on-line:
 http://www.cis.ohio-state.edu/~jain/cis788-97/index.html or
 http://www.netlab.ohio-state.edu/~jain/cis788-97/index.html or
 ftp://netlab.ohio-state.edu/pub/jain/cis788-97/

- The schedule keeps changing. Please always check current schedule at:
 http://www.cis.ohio-state.edu/~jain/cis788-97/schedule.html
Instructions (Cont)

- Please email your positive and negative feedback about the quality of the reception as well as the content with a subject field of “Feedback” to mbone@netlab.ohio-state.edu.

- If you are not able to receive the program due to some technical difficulties, please email “Feedback” to mbone@netlab.ohio-state.edu.

- Please email technical questions with the subject field “Question” to mbone@netlab.ohio-state.edu. We will try to answer selected questions live.
Fundamentals: Hub, bridge, router, switch

Full-duplex link

Features of switches

IEEE 802.1p standard on traffic classes in LANs and Dynamic multicast

Generic Attribute Registration Protocol (GARP)
ATM vs LANs

- Quality of service
- Switching
- LAN emulation
 - Ease of management
- Traffic management
- High Speed
- Priority
- Switching
- VLANs
- Flow control
- Gigabit Ethernet
Interconnection Devices

LAN = Broadcast domain

Segment = Collision Domain

Router

Gateway

Bridge/Switch

Repeater/Hub

Application

Transport

Network

Datalink

Physical

Application

Transport

Network

Datalink

Physical
Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals.
- **Hub**: Multiport repeater + fault detection and recovery.
- **Bridge**: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout “extended LAN.”
- **Switch**: Multiport bridge with parallel paths. These are functions. Packaging varies.
Full-Duplex LANs

- Uses point-to-point links between **TWO** nodes
- Full-duplex bi-directional transmission
 Transmit any time
- Not yet standardized in IEEE 802
- Many switch/bridge/NICs with full duplex
- No collisions \Rightarrow 50+ Km on fiber.
- Commonly used between servers and switches or between switches
Frame Switches: Features

- **Forwarding Type**: Cut-through, Store and forward
 - Cut-through gives lower latency but erroneous/partial frames get forwarded
 - Collision fragments (runt) ⇒ Adaptive Cut-through (after 64 bytes)

- **Switch Matrix**: Cell vs Frame switching
 - Frame switching mostly

- **Buffer Sharing**: Static or dynamic (based on usage), Input or output buffer
Switch Features (Cont)

- **Flow Control**: Switch jams the input port
 - Some switches jam all traffic
 - Others selectively jam packets only if they are going to congested port

- **Number of MAC addresses per port**: Small in workgroup switches

- **VLAN support**: by port, by MAC address, by subnets
 - Some allow stations to be in multiple VLANs, others don't.
Switch Features (Cont)

- **Routing**: Some switches route IP, IPX, and/or AppleTalk internally. Others require external routers between VLANs.

- **Fault Tolerance**:
 - Hot swappable media, power, uplinks, and fans.
 - Redundant port, power, mgmt processor, fans.
Switch Features (Cont)

- **Manageability:**
 - Proprietary, SNMP and/or RMON support
 - Traffic monitoring using mirror ports.
 - In some switches, single mirror port can monitor multiple ports.

- **Types of LANs Supported:** Ethernet, Fast Ethernet, FDDI, Token ring, 100VGAnyLAN

- **Switch Matrix Location:** Centralized vs distributed (on each port)
Traffic Classes in LANs

- IEEE 802.1p working group
- Goal: To support time-critical (continuous media) traffic
- Method:
 1. Prioritization of traffic
 2. Efficient support of multicasting
- Bridge filtering database for each port indicates whether any members of the group exist on the port
 \(\implies \) Need Group registration protocol
What's in a Name?

- The “p” in 802.1p is lower case.
- Uppercase letter ⇒ Base standard
- Lowercase letter ⇒ supplement
- 802.1p is a supplement to 802.1D bridge standard
- 802.1Q is a base VLAN standard
- 802.3z is a 1000 Mbps supplement to Ethernet Standard
Priority

- Total delay = Queueing delay + Access delay
- Access priority: As in token rings
- Queueing priority: Even in Ethernets
- User priority: Requested by the originator
 Used to determine both queueing and access priorities
IEEE 802.1p: Features

- Allows up to 8 traffic classes (priorities)
- Priority \Rightarrow Both queueing and access
- Allows queueing priority on LANs that have no access priorities, e.g., Ethernet
- Different number of priorities on different ports
- Allows dynamic multicast filtering
- Applies to all 802 MAC protocols + FDDI

802 MAC Protocols: 802.3 (Ethernet), 802.4 (Token Bus), 802.5 (Token Ring), 802.6 (DQDB), 802.9 (Integrated Services), 802.12 (Demand Priority)
Number of Priorities

- Up to 8 traffic classes (0 through n-1).
 0 = Normal service = Low priority.

- Different ports/bridges may have different number of traffic classes
 ⇒ Low-speed ports need priorities first

- Recommended four priorities:
 - Time and safety critical
 - Time critical
 - Non-time critical, loss sensitive
 - Non-time critical, loss insensitive
How is Priority Set?

- Priority may be set by user, destination address, input port, output port, access priority, or by VLAN.
- A priority may be assigned for a port ⇒ For a source station connected to a switch.
- In some LANs, priority can be encoded in frames.
- In some LANs, priority cannot be encoded in frames. 802.1p does not have a mechanism to communicate priority in such LANs.
 - It has to be regenerated locally using local database, or use 802.1Q VLAN tags.
Scheduling

- Separate queue for each priority
- Higher priority first (strict priority).
- No reordering of frames for a given priority and a given source and destination address pair
Multicast: Today

- Bridges forward multicast on all active ports
- A spanning tree is formed to avoid loops
Spanning Tree

(a) Original Network

(b) Active Network

(c) Spanning Tree
Spanning Tree (Cont)

- Unique path from each source is ensured by spanning tree
- Each tree has a root bridge
- Each LAN has a designated bridge
- The port connecting the LAN towards the root is the designated port for the LAN
- The bridge containing the designated port is the designated bridge for the LAN
Dynamic Multicast Filtering

- Send multicast frames only on LANs where receivers exist
- Multicast address registration: Join/leave a group
- Legacy multicast addresses: Unregistered
- Join/leave “all groups” (Used on legacy segments)
- Join/leave “all unregistered groups” (For coexistence of legacy and new stations during migration.)
- Static entries can exclude some multicast addresses from "all groups"
- Membership information is forwarded to other bridges
Dynamic Filtering (Cont)

- A directed subtree of the spanning tree is formed for each group
- Multicast frames are forwarded along the directed graph
Source Pruning

- Sources can stop transmission if there are no members
- Helps save local LAN bandwidth
- Implementation optional
Filtering Database

1. Static entries set by management

2. Dynamic entries:
 - a. Learning Process: Observe the source addresses of frames received on each port. Aged out.
 - b. Registration

- Static entries may specify: Forward, filter, use dynamic info to forward or filter

<table>
<thead>
<tr>
<th>Input Port</th>
<th>Dest Address</th>
<th>Output Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA-01-03-44-56-78</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>09-12-34-56-78-88</td>
<td>Filter</td>
</tr>
</tbody>
</table>
Filtering Database (Cont)

- Priority-aware bridges use all three types of entries
- Priority-unaware bridges use only static and learned entries
- Static port entries may specify:
 - Forward all groups
 - Forward unregistered groups
 - Filter unregistered groups.
GARP

- Generic Attribute Registration Protocol
- General purpose registration/distribution protocol
- The information is propagated, if necessary, to all GARP-aware bridges
- Attribute numbers have been standardized
- GARP is used for multicast and VLAN registration.
- Registrar: Records registrations by other participants on the segment. Does not send any messages.
- Applicant: Sends registration requests and queries
GARP Messages

- If two other stations have joined a group on your segment, you do not need to join. Protocol works even if one message is lost.

- JoinIn: I know that one other station is listening to this group. I want to join too.

- Leave: I want to leave.

- LeaveAll: “Everybody! This attribute will be deregistered soon. Rejoin if you want.”

- Empty: Are there any members of this attribute?

- JoinEmpty: I have not seen any other station join this group. I am the first one to Join.
GMRP

- Group Multicast Registration Protocol
- A GARP application

Attributes:
- 1 = Group address registration
- 2 = Service requirement registration
 - 0 = All groups
 - 1 = All unregistered groups
Summary

- LAN switches = Multiport bridges
- Traffic classes and dynamic multicast on LANs to allow multimedia
- IEEE 802.1p allows 8 priorities
- Distributed multicast registration protocol
References

- For a detailed list of references, see http://www.cis.ohio-state.edu/~jain/refs/lswRefs.htm

- IEEE 802.1 Email list: p8021-request@hepnrc.hep.net
 Mail archive: http://www.hep.net/mail/p8021.html

- Other Related Standards
 - 802.1D MAC bridges
 - 802.1G Remote MAC Bridging
 - 802.1H Ethernet V2.0 and 802 bridging
Current Schedule

7/17/97 Priority and Multicasting on LANs
7/22/97 No Class
7/24/97 Virtual LANs
7/29/97 Gigabit Ethernet
7/31/97 Quiz 2 (No MBone transmission)
8/5/97 Residential broadband: Cable Modems, xDSL
8/7/97 Multimedia: Compression Standards
8/12/97 Multimedia over IP: RSVP, RTP
8/14/97 Wireless LANs and WANs
8/19/97 Quiz 3 (No MBone transmission)
Credits

The MBone transmission of this lecture was made possible by:

- Mark Fullmer, OSU/UTS
- Mike Iverson, OSU/UTS
- Mike Douglas, OSU/UTS
- Jayaraman Iyer, OSU/CIS
- Sohail Munir, OSU/CIS