SONET

Raj Jain
Professor of CIS

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
SONET

- Synchronous Optical Network
- Standard developed by ANSI and Exchange Carrier Standards Association (ECSA)
- CCITT: Synchronous Digital Hierarchy (SDH)
- SONET links can be used in place of dark fiber
Two Views of SONET
Protocol Components of SONET

- **Photonic Layer**: Characteristics of fibers, transmitters, receivers and encoding (ANSI T1.106-1988)
- **Section Layer**: Transmission across a single link. Framing, scrambling, and error monitoring.
- **Line Layer**: Signaling between multiplexer switches. Frame synchronization. Multiplexing of data into SONET frames.
- **Path Layer**: End-to-end signaling issues. Mapping DS3, FDDI, BISDN into SONET payload.
Physical Components of SONET

- **Section**: Single run of fiber. Clock synchronization and timing issues
- **Line**: Sections connected via repeaters. Between multiplexers or switches
- **Path**: End-to-end
Protocol Hierarchy

Path
Line
Section
Photonic
Terminal

STSS-N Block
Frame
Light
Section
Photonic
Regenerator

Envelope

Line
Section
Photonic

Line
Section
Photonic
STS
Multiplexer

Path
Line
Section
Photonic
Terminal
SONET/SDH Signal Hierarchy

Synchronous Transport Signal Level \(n = \text{STS-}n = n \times 51.84 \text{ Mbps} \)

STM=Syncronous Transport Module, OC=Optical Carrier level

<table>
<thead>
<tr>
<th>ANSI Designation</th>
<th>Optical Signal</th>
<th>CCITT Designation</th>
<th>Data Rate (Mbps)</th>
<th>Payload Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-1</td>
<td>OC-1</td>
<td></td>
<td>51.84</td>
<td>50.112</td>
</tr>
<tr>
<td>STS-3</td>
<td>OC-3</td>
<td>STM-1</td>
<td>155.52</td>
<td>150.336</td>
</tr>
<tr>
<td>STS-9</td>
<td>OC-9</td>
<td>STM-3</td>
<td>466.56</td>
<td>451.008</td>
</tr>
<tr>
<td>STS-12</td>
<td>OC-12</td>
<td>STM-4</td>
<td>622.08</td>
<td>601.344</td>
</tr>
<tr>
<td>STS-18</td>
<td>OC-18</td>
<td>STM-6</td>
<td>933.12</td>
<td>902.016</td>
</tr>
<tr>
<td>STS-24</td>
<td>OC-24</td>
<td>STM-8</td>
<td>1244.16</td>
<td>1202.688</td>
</tr>
<tr>
<td>STS-36</td>
<td>OC-36</td>
<td>STM-12</td>
<td>1866.24</td>
<td>1804.032</td>
</tr>
<tr>
<td>STS-48</td>
<td>OC-48</td>
<td>STM-16</td>
<td>2488.32</td>
<td>2405.376</td>
</tr>
<tr>
<td>STS-96</td>
<td>OC-96</td>
<td>STM-32</td>
<td>4976.64</td>
<td>4810.176</td>
</tr>
<tr>
<td>STS-192</td>
<td>OC-192</td>
<td>STM-64</td>
<td>9953.28</td>
<td>9620.928</td>
</tr>
</tbody>
</table>

The Ohio State University

Raj Jain
Byte Multiplexing

- Also known as byte interleaving
- Easier to view in two dimensions

- \[\begin{align*}
 \cdots & \quad A3 \quad A2 \quad A1 \\
 \cdots & \quad B3 \quad B2 \quad B1 \\
 \cdots & \quad C3 \quad C2 \quad C1 \\
 \cdots & \quad C2 \quad B2 \quad A2 \quad C1 \quad B1 \quad A1 \\
 \cdots & \quad C3 \quad B3 \quad A3 \\
 \cdots & \quad C2 \quad B2 \quad A2 \\
 \cdots & \quad C1 \quad B1 \quad A1 \\
\end{align*} \]
STS-1 Frame Format

- Overhead = Header. 810 Bytes/125 ms = 51.84 Mbps

- 90 Columns
- 87 Columns

- 9 Rows
 - Section Overhead 3 Rows
 - Line Overhead 6 Rows
 - Path Overhead 1 Column
Multiplexing

51.84 Mbps

Overhead

STS-1 Payload

+ 51.84 Mbps

Overhead

STS-1 Payload

+ 51.84 Mbps

Overhead

STS-1 Payload

155.52 Mbps
Concatenation

\[
\begin{align*}
\text{51.84 Mbps} & \quad \text{STS-1 Payload} & \quad \text{Overhead} \\
\text{51.84 Mbps} & \quad \text{STS-1 Payload} & \quad \text{Overhead} \\
\text{51.84 Mbps} & \quad \text{STS-1 Payload} & \quad \text{Overhead}
\end{align*}
\]

\[\downarrow\]

\[
\begin{array}{c}
\text{155.52 Mbps} \\
\text{Overhead} \\
\text{STS-3c Payload}
\end{array}
\]
STS-3c Frame Format

- STS-3c is similar to STM-1

270 Columns

Overhead
9 Columns

Payload
261 Columns

9 Rows
Location of SPE in STS-1

- SPE supplied by the user ⇒ Can arrive at any time ⇒ SPE can straddle two successive STS-1 frames
Scrambling

- SONET uses NRZ coding. 1 = Light On, 0 = Light Off.
- Too many 1’s or 0’s ⇒ Loss of bit clocking information
- All bytes (except some overhead bytes) are scrambled
- Polynomial $1 + x^6 + x^7$ with a seed of 1111111 is used to generate a pseudorandom sequence, which is XOR’ed to incoming bits.

```
1111 1110-0000 0100-0001 1000-0101 0001-1110 0100-0101 1001-1101 0100-1111 1010-0001 1100-0100 1001-1011 0101-1011 1101-1000 1101-0010 1110-1110 0110-0101 010
```

- If user data is identical to (or complement of) the pseudorandom sequence, the result will be all 0’s or 1’s.
- T1, DS1, DS3, ...
- SONET
- SDH
- STS-n, STM-n
- STS-3c
<table>
<thead>
<tr>
<th>Framing</th>
<th>Framing</th>
<th>STS-1 ID</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A2</td>
<td>C1</td>
<td>J1</td>
</tr>
<tr>
<td>B1</td>
<td>Orderwire</td>
<td>User</td>
<td>BIP-8</td>
</tr>
<tr>
<td>D1</td>
<td>Data Com</td>
<td>Data Com</td>
<td>C2</td>
</tr>
<tr>
<td>H1</td>
<td>Pointer</td>
<td>Pointer Action</td>
<td>APS</td>
</tr>
<tr>
<td>B1</td>
<td>APS</td>
<td>APS</td>
<td>K1</td>
</tr>
<tr>
<td>B2</td>
<td>Data Com</td>
<td>Data Com</td>
<td>K2</td>
</tr>
<tr>
<td>D4</td>
<td>Data Com</td>
<td>D3</td>
<td>G1</td>
</tr>
<tr>
<td>D7</td>
<td>Data Com</td>
<td>Data Com</td>
<td>F2</td>
</tr>
<tr>
<td>D10</td>
<td>Data Com</td>
<td>D6</td>
<td>H4</td>
</tr>
<tr>
<td>Z1</td>
<td>Growth</td>
<td>Orderwire</td>
<td>Z3</td>
</tr>
<tr>
<td>Z2</td>
<td>Growth</td>
<td>E2</td>
<td>Z4</td>
</tr>
</tbody>
</table>

The Ohio State University

Raj Jain
STS-3c Overhead bytes

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>A1</td>
<td>A1</td>
<td>A2</td>
<td>A2</td>
<td>A2</td>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td>B1</td>
<td>E1</td>
<td>F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>H1</td>
<td>H1</td>
<td>H2</td>
<td>H2</td>
<td>H2</td>
<td>H3</td>
<td>H3</td>
</tr>
<tr>
<td>B2</td>
<td>B2</td>
<td>K1</td>
<td>K2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>D5</td>
<td>D6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D7</td>
<td>D8</td>
<td>D9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10</td>
<td>D11</td>
<td>D12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z1</td>
<td>Z1</td>
<td>Z1</td>
<td>Z2</td>
<td>Z2</td>
<td>Z2</td>
<td>E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J1</td>
</tr>
</tbody>
</table>

(a) Section and line overhead

(b) Path overhead