Programmable Logic Devices

- Read Only Memorys (ROM)
- Programmable Logic Arrays (PLA)
- Programmable Array Logics (PAL)
- Field Programmable Gate Arrays (FPGA)
Implementation Options for Digital Logic

- Assembly of SSI and MSI parts on PC boards.
 - mostly obsolete; still useful when just a few parts needed

- Programmable Logic Devices (PLD)
 - variety of types, with different size and performance characteristics; largest have nearly 10^6 gate “equivalents”
 - CAD tools enable simulation and automate device programming

- Application Specific Integrated Circuits (ASIC)
 - design methods similar to PLDs
 - HDLs and simulation with synthesis using standard cell library
 - plus physical design - placement of logic components and routing
 - can augment with custom design of critical components
 - higher performance, greater logic density
 - custom IC fabrication -- suitable for high production volumes
Programmable Logic Devices

- Simple logic arrays
 - implement 2 level logic circuits (AND/ OR)
 - based on regular array structure
 - several types
 - Read Only Memories (ROMs and PROMs)
 - Programmable Logic Array (PLA)
 - Programmable Array Logic (PAL)

- Field Programmable Gate Arrays (FPGA)
 - many copies of common building block
 - each block can be configured for different logic functions and typically includes a flip flop
 - programmable interconnect
 - often includes SRAM blocks
 - largest FPGAs have about 500K gates plus 500 Kb of SRAM
Read-Only Memory

- Any random access memory can implement logic.
 - store the logic function’s truth table in memory
 - example: use 4 bit RAM to get 2 input AND by storing 0 at locations 00, 01, 10 and 1 at location 11
 - with 2^m words of 1 bit each can implement any logic function with m inputs
 - memory with 2^m words of w bits each can implement w different logic functions of same m inputs

- Read-Only Memory (ROM) operates like a random access memory, but cannot be written to.
 - stored data is determined when device is manufactured
 - higher density and faster than comparable RAMs
 - non-volatile storage - data retained when power is off
 - programmable ROMs are written with PROM programmer
Implementation of ROMs

- **ROM** can be implemented using orthogonal arrangement of wires.
 - optional connection at each intersection
 - decoder puts logic ‘1’ on exactly one of the horizontal wires - this can be detected at output if connection present

- Some PROMs are configured by breaking connections.
 - high voltage placed across one input and one output at a time
 - high current flow causes “fuse” at intersection to “blow”

- Other PROMs can be erased and reprogrammed (EPROMs).

stored functions
- \(\Sigma(0,1,3,4,6) \), \(\Sigma(0,1,3,5,7) \), \(\Sigma(2,3,6,7) \), \(\Sigma(0,3,4,6) \)
Programmable Logic Arrays

- PLAs have configurable “AND-plane” & “OR-plane”.
- Can implement any 2-level AND-OR circuit.
- Efficient physical implementation in CMOS.

\[
\begin{align*}
 z_3 &= x_0'x_2'x_3'x_4'x_5 + x_0'x_1'x_2x_5 \\
 &\quad + x_0'x_2'x_3'x_4'x_5 \\
 &\quad + x_0'x_1'x_2x_5 \\
 &\quad + x_0'x_2'x_3'x_4'x_5 \\
 &\quad + x_1x_2x_3x_4'
\end{align*}
\]
Programmable Array Logic

- PAL is similar to PLA but fixed OR-plane.
- Simpler to program and cheaper implementation.
- Limited number of terms in each output.
Comparison of PROMs, PLAs & PALs

- Can view PROMs and PALs as restricted forms of PLA.
 » PROMs are logically equivalent to PLA with AND-plane that generates all minterms and configurable OR-plane.
 » PAL is logically equivalent to PLA with fixed OR-plane in which each output is the OR of a subset of the ANDs.

- Different implementations mean different capabilities.
 » means one needs to match device capabilities to the characteristics of logic equations being generated.
 » consider number inputs & outputs, total number of different terms (PLAs), number of different terms per output (PALs).
 » performance characteristics and cost also differ.

- PROMs most flexible but, if application doesn’t require full flexibility, PALs and PLAs may be preferable.
 » most parts also include flip flops, allowing sequential circuits.
Field Programmable Gate Arrays

- FPGAs can be used to construct more complex circuits.
- Chip contains a large number (tens of thousands) of configurable logic building blocks.
 » typically each block includes a 4 input function generator, a flip flop and some “glue” logic
 » CAD tools map high level circuit to basic blocks, configuring function generators & other configurable elements as needed
- Programmable interconnect used to wire logic blocks.
 » wire segments connected to logic blocks and to other wire segments by configurable switches
 » CAD tools determine switch configuration needed to provide right connectivity
- CAD tools perform mapping, placement, routing.
 » routing information used in timing analysis & simulation
Xilinx FPGA Organization

- CLBs can be connected to “passing” wires.
- Wire segments connected by switch matrix.
- Long wire segments used to connect distant CLBs.
- Configuration information stored in SRAM bits that are loaded when power turns on.
Configuring Logic

- Lookup table implements logic functions.
- Multiplexors and pass transistors implement routing.
- Switch matrix contains configurable clusters of pass transistors.
 - provides wide variety of routing options
Implementing Serial Adder in CLB

- Second flip flop still available and LUT3 partially available.