Build a 1-bit ALU that can be cascaded into an n-bit ALU that has the following properties and functions:

a. All numbers are 2’s complement,

b. Four functions:
 i. $S_1S_0=00: A = B$
 ii. $S_1S_0=01: (AB)' = \text{NAND}(A,B)$
 iii. $S_1S_0=10: -A$
 iv. $S_1S_0=11: A \text{ plus } B$

c. Contains only NAND, XOR, and INVERTER gates
Note that both logical functions (equal and NAND) have \(S_1 = 0 \), and both arithmetic functions have \(S_1 = 1 \). Hence, it’s easy to divide these into two units and use a MUX with \(S_1 \) as the select line to choose between them.

For the MUX:

This is just a 2-1 MUX where \(F = S_0 X_0 + S_1 X_1 \)

For the Logical Unit:

\[
\begin{array}{c|ccc}
S_0 & \text{AB} & A = B & (AB)' \\
0 & 00 & 1 & 1 \\
1 & 01 & 1 & 1 \\
1 & 11 & 1 & 1 \\
1 & 10 & 1 & 1 \\
\end{array}
\]

\(X_0 = A'B' + B'S_0 + ABS_0' + A'S_0 \)

For the arithmetic unit:

Using a full adder we can get (-A) by taking \(A' \) and adding one (1). Hence, the arithmetic unit is simply a full adder with some logic to control the inputs to give (A plus B) or (-A)

For the negation of A: \(A' \) plus 0 plus 1

For the sum of A and B: \(A \) plus \(B \) plus \(C_{in} \)

For the full adder, we know

\[
\begin{align*}
S &= X \oplus Y \oplus C_{in} \\
C_{out} &= XY + XC_{in} + YC_{in}
\end{align*}
\]
Now we need some logic to select the values of X and Y to make our two functions work.

Let the X input be A or A' based on S_0:
$$X = S_0A' + S_0A = (S_0 \oplus A)'$$

Let the Y input be 0 or B based on S_0:
$$Y = S_0B$$

The addition of 1 for the negation will be done through C_{in} when $S_0 = 0$
$$C_{in} = S'_0$$

The complete circuit looks like this:

If this is the least significant bit, then C_{in} should be S'_0. This is the general circuit, however, where C_{in} of stage n is wired to C_{out} of stage $n-1$.