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Abstract

Patients undergoing thoracic radiation therapy can de-
velop radiation pneumonitis (RP), a potentially fatal inflam-
mation of the lungs. Support vector machines (SVMs), a sta-
tistical machine learning method, have recently been used
to build binary-outcome RP prediction models with promis-
ing results. In this work, we (1) introduce a feature-ranking
selection step to improve the parsimony of our previous en-
semble SVM model (2) show that ensembles of SVMs pro-
vide a statistically significant performance improvement in
the area under the cross-validated receiver operating curve
and (3) apply Platt’s tuning to the component SVMs to gen-
erate probability estimates in order to augment clinical rel-
evance.

1. Introduction

Radiation pneumonitis (RP) is a potentially fatal inflam-
mation of the lungs that can result from thoracic radiation
therapy. Numerous factors, such as maximum dose [9] and
gender [16, 3], have been shown to correspond RP inci-
dence. A tabulated summary of previous findings can be
found in Table IV of Das et al.’s work in [3]. There is no
clear consensus on a core set of factors affecting RP risk; the
lack of consensus can be partly attributed to salient differ-
ences across studies including patient populations [5] and
model evaluation metrics.

Within the last 5 years, there has been a push to move
beyond correlation analysis to the construction of predic-
tive models using machine learning techniques. One such
technique relies on SVMs – a class of statistical learning
methods. Within an SVM, the input data are mapped into
a higher, possibly infinite, dimensional space. The hyper-
plane best separating the two classes in this feature space
is used to define a decision function. The best hyperplane
maximizes the margin (distance) between the plane and the
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Figure 1. SVM classification: two classes of
instances are mapped to an implicit space in
which they are separable.

closest instances on either side (see Fig. 1).
The model’s decision function score can be used as a rel-

ative indication of risk/certainty – a premise used when cal-
culating the area under the curve (AUC) for a receiver op-
erating characteristic (ROC) curve. The clinical meaning of
the difference between scores is not well-defined, however.
For instance, a patient with a decision score 20% higher
than that of a another patient does not necessarily have 20%
greater chance of developing RP. In this way, decision func-
tion scores are of limited use in a clinical setting.

Up until now, SVM-only models of RP risk have been
binary-outcome – predicting that the patient will either de-
velop or not develop RP. However, support vector machine
theory is now sufficiently advanced to correctly produce
probability estimates from decision function scores [15,
12].

In [17], we presented a model that fused the output from
multiple SVMs to produce an improved binary-outcome
model of RP risk. In this paper, we:

1. Introduce a feature-ranking selection step to our previ-
ous ensemble method to improve model parsimony

2. Show increased ensemble size provides a statistically
significant benefit to model AUC

3. Probabilistically tune component SVM output to im-



prove clinical relevance

These innovations produce a better SVM-based approach to
assessing radiation pneumonitis risk and help to character-
ize challenges in the problem domain.

In the next section, we provide background informa-
tion on SVM model building, model evaluation, and tun-
ing SVM output to produce probabilistic estimates. In Sec-
tion 3, we survey related work. In Section 4, we outline our
improved ensemble SVM methodology. Results are pre-
sented and discussed in Section 5. Finally, we offer con-
cluding remarks in Section 6.

2. Training and evaluating support vector ma-
chines

This section briefly introduces SVM training methodol-
ogy, the cross-validated AUC method for model evaluation,
and Platt’s method for producing probabilistic outputs from
an SVM.

2.1. Support vector machine training

SVMs are trained by finding the hyperplane that best
separates the classes in the feature space. The instances
are implicitly mapped into the space using a kernel func-
tion such as the Gaussian Radial Basis Function (RBF):

Kσ(x, y) = exp
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where σ is a vector of scaling factors.
Finding the optimal hyperplane can be formulated as an

optimization problem:
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Finding the optimal α results in a decision function of the
form:

f(x) =
∑

i

αiyiK(xi,x) + b . (3)

When the data are not separable in the feature space, a
complexity parameter C is introduced to allow training er-
ror. C can be included in the model as an extension of the
kernel during training:

K ← K +
1
C

I , (4)

where I is the identity matrix [1].
Kernel parameter σ and model parameter C are often se-

lected prior to model building using grid-search [11].The
optimization problem in Equation 2 can then be solved
using Platt’s sequential minimal optimization (SMO)
method [14]. Chapelle et al. present an alternative method
in which model/parameters are selected concurrently with
model building. Alternating SVM training steps and gradi-
ent descent parameter selection steps are used to minimize
an estimate of generalization error [1].

2.2. Cross-validation analysis

To properly evaluate a model’s predictive ability, the
training and testing data sets should be disjoint. Data
scarcity, however, makes utilizing a separate monolithic val-
idation set undesirable. Instead, cross-validation, a method
for alternately using data for training and testing is used. In
k-folds cross-validation analysis, the dataset is segmented
into k pair-wise disjoint subsets. Each subset is used as a
validation set exactly once as the remaining subsets are used
to build the model. The results from testing on the k subsets
are then combined. When the number of folds is equal to the
number data instances (each subset contains one instance),
the method is called the leave-one-out (LOO) method.

2.3. Area under the receiver operating characteris-
tic curve

The area under the curve (AUC) for the receiver oper-
ating characteristic (ROC) curve is a popular single-value
metric of model performance. The ROC is a plot of a
model’s sensitivity against (1 - specificity) as the decision
function threshold is varied, where sensitivity and speci-
ficity are defined as:

sensitivity =
# true positives

# true positives + # false negatives

specificity =
# true negatives

# true negatives + # false positives
.

For the radiation pneumonitis problem, the AUC can be
interpreted as the probability that a randomly chosen pa-
tient that develops RP will be given a higher risk estimate
by the model than a randomly chosen patient that does not
develop RP [6]. An AUC of 0.5 corresponds to a model
that produces random risk estimates, while an AUC of 1.0
corresponds to a perfect model.

Instead of explicitly finding the area under the ROC
curve, the AUC can be calculated as:
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Figure 2. Sigmoid probability curve with A=-2
and B=1

Â =
S0 − n0(n0 + 1)/2

n0n1
, (5)

where S0 is the rank sum of the positive instances when the
decision scores are sorted in ascending order, n0 in the num-
ber of positive instances, and n1 is the number of negative
instances [8].

2.4. Platt’s method for probabilistic support vector
machine output

The unthresholded SVM decision function produces a
real-valued output corresponding to the distance between
the instance and the separating hyperplane in the SVM’s
implicit space. While relative distance to the hyperplane is
used as a proxy for relative risk when calculating AUC, the
SVM decision function score cannot be used directly as an
absolute probability estimate.

Platt offers a relatively simple, but effective, way to con-
vert the decision function score to a probability measure by
fitting a sigmoid function of the form

P (y = 1|f) =
1

1 + exp(Af + B)
(6)

to the SVM output [15]. See Fig. 2 for an example curve
with A = −2 and B = 1.

Let N+ and N− be the number of RP positive and neg-
ative instances in a training set, respectively. Then the tar-
get probabilities for t+ for positive instances and t− for RP
negative instances are defined as:

t+ =
N+ + 1
N+ + 2

t− =
1

N− + 2
. (7)

The sigmoid parameters A and B are selected by minimiz-
ing the cross-entropy error on training data:

min
A,B

∑

i

ti log(pi) + (1− ti) log(1− pi) , (8)

where pi = P (yi = 1|fi) and ti = t+ when instance i is
RP positive.

Lin et al. provide pseudo-code for a corrected (and im-
proved) implementation of Platt’s method in [12].

3. Related Work

Chen et al. investigate two classes of binary SVM mod-
els for significant RP events (2+ grade) in lung cancer re-
ceiving 3-D conformal radiotherapy [2]. The first class only
includes dosimetric parameters, such as equivalent uniform
dose (EUD), while the second also includes clinical param-
eters – race, age, etc. The classes are evaluated using a
10-fold AUC. Parameter and feature selection is performed
within each of the 10-folds. A published model reports both
the SVM decision function score and the number of patients
in the original dataset that received a higher score given a
novel patient/treatment plan. The authors do not formally
discuss/investigate the latter rank as an estimation of radia-
tion pneumonitis risk.

El Naqa et al. briefly compare recursive feature elim-
ination (RFE) and logistic regression for feature selection
when modeling RP outcomes with an SVM. An SVM with a
RBF kernel is constructed using features selected from dosi-
metric and non-dose variables. The resulting models are
compared using Matthew’s correlation coefficient (MCC),
a function of the confusion matrix for some test set [13].

Other research performed by the same research groups
explore real-valued models (analog) models of RP risk.
Das et al. extend their SVM investigation in [2] by in-
cluding the binary SVM model in a model that includes a
feed-forward neural network, a decision tree, and a self-
organizing map [3]. The models are combined (fused) by
taking the mean of 100 binary cross-folded predictions from
each of the four models. An extreme output of 1.0 – pro-
duced by 400 model positive RP predictions – implies con-
sensus that the patient will suffer RP. The mean is described
as a proxy for the probability of a RP event. However, its
validity as such is not formally established. Equivalent uni-
form dose, pre-radiotherapy chemotherapy, and gender are
chosen as variables for a logistic regression of the fusion
function probabilities. The fit of the regression is demon-
strated graphically.

Hope et al. construct a 3-variable logistic model of ra-
diation pneumonitis using features selected via statistical
bootstrapping. Though their method does not use SVMs,
their method of model comparison is notable. Patients are
binned into 6 risk groups according to predicted RP risk



values. The average predicted risk value within each risk
bin is compared graphically to the actual incidence of RP
experienced by patients within the bin [9].

4. Methods

This section briefly outlines our ensemble method in [17]
and provides implementation details for the methods spe-
cific to this work. All the methods were implemented in
Matlab 7.8.0 (R2009a).

4.1. Data set description

The data set is composed of 209 patients that underwent
radiation treatment for non-small-cell lung cancer between
1991 and 2001. Data for each patient include clinical, treat-
ment, and tumor location factors such as age, gender, per-
formance status (overall patient health), the maximum dose
to the heart, the lateral position of the tumor (COMLAT),
and the superior-inferior position of the tumor (COMSI).
Each feature is scaled to the range [0,1], inclusive. Patients
that developed WUSTL Grade 2+ and RTOG Grade 3+ RP
events were labeled as RP positive (a summary of grading
systems can be found in Table 1 of [9]). Using this stan-
dard, 48 (23%) patients were considered to have exhibited
clinically significant RP. A detailed description of the data
set can be found in [4].

4.2. Ensemble of support vector machines

Instead of the single SVM approach used by Chen et
al. [2], we use an ensemble of SVMs to address data im-
balance and exploit potential synergies [17, 3]. As in our
previous work in [17], the data is randomly partitioned into
equally-balanced subsets. Each of these partitions is used
as the underlying training data for an SVM with a Gaus-
sian RBF kernel. The decision function for the ensemble
classifier is the mean of the decision function scores of the
component classifiers. Each component SVM is built us-
ing Chapelle et al.’s method mentioned in Section 2.1. The
method is used to minimize a support vector span estimate
of the LOO error [18]. It is important to re-emphasize that
model parameter C and kernel parameter σ are selected for
each SVM during model building, as opposed to separately
before.

4.3. SVM feature selection

Features are selected according to a modified version of
the AUC-maximizing forward selection algorithm in [2].
As with component SVM construction, training data is
randomly partitioned into equally-balanced subsets to be
used as underlying data for a larger set of feature selection

n minimum AUC mean AUC maximum AUC
1 .5828 .6959 .7712
3 .6486 .7246 .7853
5 .6786 .7374 .7940

10 .6925 .7501 .7937

Table 1. Minimum, mean, and maximum 10-
fold AUCs by ensemble size across 100 trials.
The SVM feature set was composed of lateral
tumor position, superior-inferior tumor posi-
tion, performance status, and maximum dose
to the heart.

SVMs. For each of these SVMs, features are added / ran-
domly substituted into the model until the 10-fold cross-
validated AUC for the SVM fails to improve. To main-
tain model parsimony and limit training time, the maximum
number of features selected by each classifier is limited to
five. The feature selections are compiled to rank the features
according to the number of times each feature was selected.
The set of top-ranked features are used as the feature set for
all of the component SVMs in the ensemble. In practice, we
use the set of features included in at least one out of every
five models.

4.4. Probabilistic Tuning

After the feature selection step, the output of each com-
ponent SVM is tuned with an implementation of Lin et al.’s
refinement of Platt’s method (see Section 2.4) [12]. The
decision function scores for input are generated by testing
using a 10-fold cross-folding of the training set.

5. Results and discussion

We trained a series of 5 classifier ensembles using leave-
one-out. The most commonly selected features across all
the folds are the lateral position of the tumor (COMLAT),
the superior-inferior position of the tumor (COMSI), the
performance status of the patient (general health as evalu-
ated by a physician), and the maximum dose to the heart.
These features have all been identified as important RP fac-
tors in previous research [9, 7, 4]. Throughout this section,
we will use this feature set as an approximation of the fea-
tures set that would be selected by a sufficiently large col-
lection of SVMs during feature selection within a fold.

To test for synergies arising from the ensemble method,
we evaluated paired differences in 10-fold AUC for 100 dif-
ferent foldings using n = 1, 3, 5, 10 component SVMs. The
outputs of the component SVMs were not tuned. Instead of
repeatedly performing feature selection, the feature set con-
taining COMSI, COMLAT, performance status, and maxi-



n 1 3 5 10
1 .2040 .0693 .0317 .7593
3 .4010 .2930 .6738
5 .3898 .6195

10 .6771

Table 2. Jarque-Bera test p-values for paired
differences in AUC. Diagonal contains p-
values for the individual sets.

mum dose to the heart was used. Feature scaling was still
allowed during model building, however, via kernel σ selec-
tion. AUC summaries from the trials are shown in Table 1.
These AUCs are not directly comparable to the prior SVM
result in [2] because of patient population differences – pa-
tients in our data only received treatment for non-small-cell
lung cancer. The seeming inconsistency with our prior re-
sult in [17] can be explained, in part, by (1) the difference
in the number of folds (2) the uniform set of features across
all component SVMs (3) differences in the partitions under-
lying the component SVMs.

To perform a paired Student’s t-test to detect differences
in mean model performance, the underlying distribution of
differences must be approximately normal. Jarque-Bera
tests reject normality at the 5% significance level only for
the n=5 v. n=1 case (p-values are shown in Table 2) [10].
For the other pairs, a series of paired Student’s t-test were
performed with the hypotheses:

• Hnull : µX−Y = 0

• Halt : µX−Y > 0

, where X is the distribution of AUCs for larger classifier.
The null hypothesis was rejected for all comparisons at the
5% significance level in favor of the one-tailed alternative
(see Table 3). This suggests that larger ensembles outper-
form smaller ensembles and single classifiers for the se-
lected sizes. Thus, synergy can be captured without intro-
ducing methodological differences in component classifiers
as seen in [3]. It it important to note, however, that the as-
sumption of independence between pairs had to be relaxed
since all foldings contain the same underlying patient data.

Next, we consider ensembles with tuned output. Since
patient outcomes are binary, the quality of probabilistic out-
puts cannot be directly measured. AUC, however, is still an
important metric because it is based on the relative decision
function scores. A low AUC for an ROC curve constructed
from probability estimates implies poor relative probabili-
ties.

Hope et al. evaluate model probability outputs graph-
ically by binning patients by predicted risk and plotting
the predicted and actual incidences of RP within each bin
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Figure 3. ROC built from LOO cross-validation
scores for a n=20 SVM ensemble with proba-
bilistic outputs.

n 3 5 10
1 3.9964e-10 * 7.6572e-29
3 2.9434e-06 1.1102e-16
5 1.4991e-07

Table 3. One-tailed Student t-test p-values for
paired differences in AUC. * indicates normal-
ity assumption was violated.

[9]. We do the same using LOO probability scores for en-
sembles with 20 component SVMs. The ROC curve, with
AUC=0.7312, is shown in Fig. 3.

Fig. 4 shows the predicted and actual RP incidence rates
in 6 groups binned by predicted RP. The higher actual RP
incidence rate in Bin 3 compared to Bin 4 is indicative of
poor relative rankings. This discrepancy can be expected
since the AUC of 0.7312 reflects a 27% probability that
a random patient that does not develop RP will receive a
higher predicted risk than a random patient that will develop
RP. The over-estimation of RP risk in the lower bins can be
explained by the averaging performed during model fusion.
The lowest fused probability is 8.04%, while the lowest sin-
gle SVM probability estimate is 1.26%.

Fig. 5 shows predicted and actual RP binned rates when
predicted probabilities are calculated as the mean of 100
non-tuned binary-outcome SVMs – following the main idea
in [3]. The large over-estimation of risk in Bin 5 and Bin
6 suggest that the mean binary-outcome is not a suitable
proxy for RP risk probability.

While quality of absolute probability estimates for both
methods is debatable, the ability to assign a patient to a rel-
ative risk group is useful in a clinical setting.
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Figure 4. RP incidence probabilities binned
by Platt-tuned predicted probability.
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Figure 5. RP incidence probabilities binned
by binary-averaged predicted probability.

6. Conclusion

We have presented a feature-ranking step for maintaining
parsimony when modeling radiation pneumonitis with an
ensemble of support vector machines. We then showed that
larger ensembles produce improved 10-fold cross-validated
AUCs at a statistically significant level. Finally, we demon-
strated that generating probability estimates with Platt’s
method from the component SVMs provides benefits for
clinical use. However, these potential benefits are limited
by errors in relative risk assessments, as explained by the
area under the receiver operating characteristic curve.
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