CSE 554
Lecture 7: Alignment

Fall 2012

Review

• Fairing (smoothing)
 – Relocating vertices to achieve a smoother appearance
 – Method: centroid averaging

• Simplification
 – Reducing vertex count
 – Method: edge collapsing
Registration

• Fitting one model to match the shape of another
 – Automated annotation
 – Tracking and motion analysis
 – Shape and data comparison

Brain outlines of two mice
A B C D
After alignment
After deformation

Registration

• Challenges: global and local shape differences
 – Imaging causes global shifts and tilts
 • Requires alignment
 – The shape of the organ or tissue differs in subjects and evolve over time
 • Requires deformation
Alignment

• Registration by translation or rotation
 – The structure stays “rigid” under these two transformations
 • Called rigid-body or isometric (distance-preserving) transformations
 – Mathematically, they are represented as matrix/vector operations

Before alignment After alignment

Transformation Math

• Translation
 – Vector addition: \(\mathbf{p}' = \mathbf{v} + \mathbf{p} \)

 - 2D: \[
 \begin{pmatrix}
 p_x' \\
 p_y'
 \end{pmatrix} = \begin{pmatrix}
 v_x \\
 v_y
 \end{pmatrix} + \begin{pmatrix}
 p_x \\
 p_y
 \end{pmatrix}
 \]

 - 3D: \[
 \begin{pmatrix}
 p_x' \\
 p_y' \\
 p_z'
 \end{pmatrix} = \begin{pmatrix}
 v_x \\
 v_y \\
 v_z
 \end{pmatrix} + \begin{pmatrix}
 p_x \\
 p_y \\
 p_z
 \end{pmatrix}
 \]
Transformation Math

- Rotation
 - Matrix product: \(\mathbf{p}' = \mathbf{R} \cdot \mathbf{p} \)

 - 2D:
 \[
 \begin{pmatrix}
 \mathbf{p}'_x \\
 \mathbf{p}'_y
 \end{pmatrix} = \mathbf{R} \cdot \begin{pmatrix}
 \mathbf{p}_x \\
 \mathbf{p}_y
 \end{pmatrix}
 \]

 \[
 \mathbf{R} = \begin{pmatrix}
 \cos(\alpha) & -\sin(\alpha) \\
 \sin(\alpha) & \cos(\alpha)
 \end{pmatrix}
 \]

 - Rotate around the origin!
 - To rotate around another point \(\mathbf{q} \):

 \[
 \mathbf{p}' = \mathbf{R} \cdot (\mathbf{p} - \mathbf{q}) + \mathbf{q}
 \]

- 3D:

 \[
 \begin{pmatrix}
 \mathbf{p}'_x \\
 \mathbf{p}'_y \\
 \mathbf{p}'_z
 \end{pmatrix} = \mathbf{R} \cdot \begin{pmatrix}
 \mathbf{p}_x \\
 \mathbf{p}_y \\
 \mathbf{p}_z
 \end{pmatrix}
 \]

 Around X axis: \(\mathbf{R}_x = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos(\alpha) & -\sin(\alpha) \\
 0 & \sin(\alpha) & \cos(\alpha)
 \end{pmatrix} \)

 Around Y axis: \(\mathbf{R}_y = \begin{pmatrix}
 \cos(\alpha) & 0 & \sin(\alpha) \\
 0 & 1 & 0 \\
 -\sin(\alpha) & 0 & \cos(\alpha)
 \end{pmatrix} \)

 Around Z axis: \(\mathbf{R}_z = \begin{pmatrix}
 \cos(\alpha) & -\sin(\alpha) & 0 \\
 \sin(\alpha) & \cos(\alpha) & 0 \\
 0 & 0 & 1
 \end{pmatrix} \)

Any arbitrary 3D rotation can be composed from these three rotations.
Transformation Math

Properties of an arbitrary rotational matrix

- **Orthonormal** (orthogonal and normal): \(R \cdot R^T = I \)
 - Examples:
 \[
 \begin{pmatrix}
 \cos(\alpha) & -\sin(\alpha) \\
 \sin(\alpha) & \cos(\alpha)
 \end{pmatrix}
 \begin{pmatrix}
 \cos(\alpha) & \sin(\alpha) \\
 -\sin(\alpha) & \cos(\alpha)
 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos(\alpha) & -\sin(\alpha) \\
 0 & \sin(\alpha) & \cos(\alpha)
 \end{pmatrix}
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos(\alpha) & \sin(\alpha) \\
 0 & -\sin(\alpha) & \cos(\alpha)
 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
 \]
 - **Easy to invert**: \(R^{-1} = R^T \)
 - Any orthonormal matrix represents a rotation around some axis (not limited to X,Y,Z)

- **Given an orthonormal matrix, the angle of rotation represented by the matrix can be easily calculated from the trace of the matrix**
 - **Trace**: sum of diagonal entries
 - 2D: The trace equals \(2 \cos(a)\), where \(a\) is the rotation angle
 - 3D: The trace equals \(1 + 2 \cos(a)\)
 - The larger the trace, the smaller the rotation angle
Transformation Math

• Eigenvectors and eigenvalues
 – Let M be a square matrix, v is an eigenvector and λ is an eigenvalue if:
 \[M \cdot v = \lambda \cdot v \]
 – If M represents a rotation (i.e., orthonormal), the rotation axis is an eigenvector whose eigenvalue is 1.
 – There are at most m distinct eigenvalues for a $m \times m$ matrix
 – Any scalar multiples of an eigenvector is also an eigenvector (with the same eigenvalue).

Alignment

• Input: two models represented as point sets
 – Source and target
• Output: locations of the translated and rotated source points
Alignment

- **Method 1: Principal component analysis (PCA)**
 - Aligning principal directions

- **Method 2: Singular value decomposition (SVD)**
 - Optimal alignment given prior knowledge of correspondence

- **Method 3: Iterative closest point (ICP)**
 - An iterative SVD algorithm that computes correspondences as it goes

Method 1: PCA

- Compute a shape-aware coordinate system for each model
 - Origin: Centroid of all points
 - Axes: Directions in which the model varies most or least

- Transform the source to align its origin/axes with the target

Method 1: PCA

- Computing axes: Principal Component Analysis (PCA)
 - Consider a set of points \(p_1, \ldots, p_n \) with centroid location \(c \)
 - Construct matrix \(P \) whose \(i \)-th column is vector \(p_i - c \)
 - 2D (2 by \(n \)): \(P = \begin{bmatrix} p_{1x} - c_x & p_{2x} - c_x & \cdots & p_{nx} - c_x \\ p_{1y} - c_y & p_{2y} - c_y & \cdots & p_{ny} - c_y \end{bmatrix} \)
 - 3D (3 by \(n \)): \(P = \begin{bmatrix} p_{1x} - c_x & p_{2x} - c_x & \cdots & p_{nx} - c_x \\ p_{1y} - c_y & p_{2y} - c_y & \cdots & p_{ny} - c_y \\ p_{1z} - c_z & p_{2z} - c_z & \cdots & p_{nz} - c_z \end{bmatrix} \)
 - Build the covariance matrix: \(M = P \cdot P^T \)
 - 2D: a 2 by 2 matrix
 - 3D: a 3 by 3 matrix

Method 1: PCA

- Computing axes: Principal Component Analysis (PCA)
 - **Eigenvectors** of the covariance matrix represent principal directions of shape variation
 - The eigenvectors are **un-singed** and orthogonal (2 in 2D; 3 in 3D)
 - **Eigenvalues** indicate amount of variation along each eigenvector
 - Eigenvector with largest (smallest) eigenvalue is the direction where the model shape varies the most (least)
Method 1: PCA

- PCA-based alignment
 - Let c_S, c_T be centroids of source and target.
 - First, translate source to align c_S with c_T:
 $$p_i^* = p_i + (c_T - c_S)$$
 - Next, find rotation R that aligns two sets of PCA axes, and rotate source around c_T:
 $$p_i' = c_T + R \cdot (p_i^* - c_T)$$
 - Combined:
 $$p_i' = c_T + R \cdot (p_i - c_S)$$

Method 1: PCA

- Finding rotation between two sets of oriented axes
 - Let A, B be two matrices whose columns are the axes
 - The axes are orthogonal and normalized (i.e., both A and B are orthonormal)
 - We wish to compute a rotation matrix R such that:
 $$R \cdot A = B$$
 - Notice that A and B are orthonormal, so we have:
 $$R = B \cdot A^{-1} = B \cdot A^T$$
Method 1: PCA

- Assigning orientation to PCA axes
 - There are 2 possible orientation assignments in 2D
 - In 3D, there are 4 possibilities (observing the right-hand rule)

- Finding rotation between two sets of un-oriented axes
 - Fix the orientation of the target axes.
 - For each orientation assignment of the source axes, compute R
 - Pick the R with smallest rotation angle (by checking the trace of R)

![Diagram showing orientation and rotation](image-url)
Method 1: PCA

- Limitations
 - Centroid and axes are affected by noise

![PCA result with noise](image1)

- Limitations
 - Axes can be unreliable for circular objects
 - Eigenvalues become similar, and eigenvectors become unstable

![Rotation by a small angle](image2)
Method 2: SVD

- Optimal alignment between corresponding points
 - Assuming that for each source point, we know where the corresponding target point is

- Formulating the problem
 - Source points p_1,\ldots,p_n with centroid location c_S
 - Target points q_1,\ldots,q_n with centroid location c_T
 - q_i is the corresponding point of p_i
 - After centroid alignment and rotation by some R, a transformed source point is located at:
 $$ p_i' = c_T + R \cdot (p_i - c_S) $$
 - We wish to find the R that minimizes sum of pair-wise distances:
 $$ E = \sum_{i=1}^{n} \| q_i - p_i' \|^2 $$
Method 2: SVD

- An equivalent formulation
 - Let P be a matrix whose i-th column is vector $p_i - c_S$
 - Let Q be a matrix whose i-th column is vector $q_i - c_T$
 - Consider the cross-covariance matrix:
 $$M = P \cdot Q^T$$
 - Find the orthonormal matrix R that maximizes the trace:
 $$\text{Tr} [R \cdot M]$$

Method 2: SVD

- Solving the minimization problem
 - Singular value decomposition (SVD) of an m by m matrix M:
 $$M = U \cdot W \cdot V^T$$
 - U, V are m by m orthonormal matrices (i.e., rotations)
 - W is a diagonal m by m matrix with non-negative entries
 - The orthonormal matrix (rotation) $R = V \cdot U^T$ is the R that maximizes the trace $\text{Tr} [R \cdot M]$
 - SVD is available in Mathematica and many Java/C++ libraries
Method 2: SVD

- SVD-based alignment: summary
 - Forming the cross-covariance matrix
 \[M = P \cdot Q^T \]
 - Computing SVD
 \[M = U \cdot W \cdot V^T \]
 - The rotation matrix is
 \[R = V \cdot U^T \]
 - Translate and rotate the source:
 \[p_i' = c_T + R \cdot (p_i - c_S) \]

Method 2: SVD

- Advantage over PCA: more stable
 - As long as the correspondences are correct
Method 2: SVD

- Advantage over PCA: more stable
 - As long as the correspondences are correct

Method 2: SVD

- Limitation: requires accurate correspondences
 - Which are usually not available
Method 3: ICP

- The idea
 - Use PCA alignment to obtain initial guess of correspondences
 - Iteratively improve the correspondences after repeated SVD

- Iterative closest point (ICP)
 - 1. Transform the source by PCA-based alignment
 - 2. For each transformed source point, assign the closest target point as its corresponding point. Align source and target by SVD.
 - Not all target points need to be used
 - 3. Repeat step (2) until a termination criteria is met.

ICP Algorithm

After PCA

After 1 iter

After 10 iter
ICP Algorithm

- Termination criteria
 - A user-given maximum iteration is reached
 - The improvement of fitting is small
 - Root Mean Squared Distance (RMSD):
 \[
 \sqrt{\frac{\sum_{i=1}^{n} \| q_i - p_i' \|^2}{n}}
 \]
 - Captures average deviation in all corresponding pairs
 - Stops the iteration if the difference in RMSD before and after each iteration falls beneath a user-given threshold
More Examples

After PCA

After ICP

More Examples

After PCA

After ICP