Shape of the region to the left of sweep line after processing v_i: “Funnel”

1. Two monotone chains (upper and lower) starting from the left-most vertex u
2. The chain that ends in v_i is a reflex chain
3. The other chain has one edge whose other vertex lies to the right of v_i
Case 1 (v_{i+1} not on reflex chain): add diagonals from v_{i+1} to all vertices on the reflex chain.
Case 2 (v_{i+1} on reflex chain): add diagonals from v_{i+1} to previous vertices on reflex chain until a reflex vertex is formed.
Algorithm:

- Sort all vertices of the x-monotone polygon by ascending x coordinates as \(v_1, \ldots, v_n \)
- Initialize a stack \(S \) (reflex chain), push \(v_1 \) and \(v_2 \) into \(S \)
- For \(i=2 \) to \(n-2 \)
 - If \(v_{i+1} \) and top of \(S \) are on different chains (i.e., Case 1)
 - Pop all vertices from \(S \)
 - Create a diagonal from each popped vertex (except last one) to \(v_{i+1} \)
 - Push \(v_i \) and \(v_{i+1} \) into \(S \)
 - Else (i.e., Case 2)
 - Pop a vertex from \(S \)
 - Pop vertices from \(S \) and create diagonal to \(v_{i+1} \) as long as no new reflex vertices are formed
 - Push \(v_{i+1} \) to \(S \)