A Whirlwind Tour of Game Theory

(Mostly from Fudenberg & Tirole)

Players choose actions, receive rewards based on their own actions and those of the other players.

Example, the Prisoner’s Dilemma:

<table>
<thead>
<tr>
<th></th>
<th>Cooperate</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>+3, +3</td>
<td>0, +5</td>
</tr>
<tr>
<td>Defect</td>
<td>+5, 0</td>
<td>+1, +1</td>
</tr>
</tbody>
</table>

Strategies and Nash Equilibrium

A strategy is a specification for how to play the game for a player. A pure strategy defines, for every possible choice a player could make, which action the player picks. A mixed strategy is a probability distribution over strategies.

A Nash equilibrium is a profile of strategies for all players such that each player’s strategy is an optimal response to the other players’ strategies. Formally, a mixed-strategy profile σ^* is a Nash equilibrium if for all players i:

$$u^i(\sigma^*_i, \sigma^*-i) \geq u^i(s^i, \sigma^*-i) \forall s^i \in S^i$$

Nash equilibrium of Prisoner’s Dilemma: Both players defect!
Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>+1,−1</td>
<td>−1,+1</td>
</tr>
<tr>
<td>T</td>
<td>−1,+1</td>
<td>+1,−1</td>
</tr>
</tbody>
</table>

No pure strategy equilibria

Nash equilibrium: Both players randomize half and half between actions.

More on Equilibria

Dominated strategies: Strategy s_i (strictly) dominates strategy s'_i if, for all possible strategy combinations of opponents, s_i yields a (strictly) higher payoff than s'_i to player i.

Iterated elimination of strictly dominated strategies: Eliminate all strategies which are dominated, relative to opponents’ strategies which have not yet been eliminated.

If iterated elimination of strictly dominated strategies yields a unique strategy n-tuple, then this strategy n-tuple is the unique Nash equilibrium (and it is strict).

Every Nash equilibrium survives iterated elimination of strictly dominated strategies.
Multiple Equilibria

A coordination game:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>9,9</td>
<td>0,8</td>
</tr>
<tr>
<td>D</td>
<td>8,0</td>
<td>7,7</td>
</tr>
</tbody>
</table>

U, L and D, R are both Nash equilibria. What would be reasonable to play? With and without coordination?

While U, L is pareto-dominant, playing D and R are “safer” for the row and column players respectively...

Existence of Equilibria

Nash’s theorem, translated: every game with a finite number of actions for each player where each player’s utilities are consistent with the (previously discussed) axioms of utility theory has an equilibrium in mixed strategies.

Idea 1: Reaction correspondences. Player i’s reaction correspondence r_i maps each strategy profile σ to the set of mixed strategies that maximize player i’s payoff when her opponents play σ_{-i}. Note that r_i depends only on σ_{-i}, so we don’t really need all of σ, but it will be useful to think of it this way. Let r be the Cartesian product of all r_i. A fixed point of r is a σ such that $\sigma \in r(\sigma)$, so that for each player, $\sigma_i \in r_i(\sigma)$. Thus a fixed point of r is a Nash equilibrium.

Kakutani’s FP theorem says that the following are sufficient conditions for $r : \Sigma \to \Sigma$ to have a FP.
1. Σ is a compact, convex, nonempty subset of a finite-dimensional Euclidean space.
 Satisfied, because it's a simplex

2. r(σ) is nonempty for all σ
 Each player's playoffs are linear, and therefore continuous, in her own mixed strategy. Continuous functions on compact sets attain maxima.

3. r(σ) is convex for all σ
 Suppose not. Then ∃σ', σ'' such that λσ' + (1 − λ)σ'' ∉ r(σ) But for each player i,
 \[u_i(\lambda\sigma_i' + (1 − \lambda)\sigma_i'', \sigma_{-i}) = \lambda u_i(\sigma_i', \sigma_{-i}) + (1 − \lambda)u_i(\sigma_i'', \sigma_{-i}) \]
 so that if both σ' and σ'' are best responses to σ_{-i}, then so is their weighted average.

4. r(·) has a closed graph
 The correspondence r(·) has a closed graph if the graph of r(·) is a closed set. Whenever the sequence (σ^n, ˆσ^n) → (σ, ˆσ), with ˆσ^n ∈ r(σ^n)∀n, then ˆσ ∈ r(σ) (same as upper hemicontinuity)
 Suppose that there is a sequence (σ^n, ˆσ^n) → (σ, ˆσ) such that ˆσ^n ∈ r(σ^n)∀n, but ˆσ ∉ r(σ). Then there exists ε > 0 and σ' such that
 \[u_i(σ'_i, σ_{-i}) > u_i(ˆσ_i, σ_{-i}) + 3ε \]
 Then, for sufficiently large n,
 \[u_i(σ'_i, σ^n_{-i}) > u_i(σ'_i, σ_{-i}) − ε > u_i(ˆσ_i, σ_{-i}) + 2ε \]
 which means that σ'_i does strictly better against σ^n_{-i} than ˆσ^n_i does, contradicting our assumption.
Learning in Games∗

How do players reach equilibria?

What if I don’t know what payoffs my opponent will receive?

I can try to learn her actions when we play repeatedly (consider 2-player games for simplicity).

Fictitious play in two player games. Assumes stationarity of opponent’s strategy, and that players do not attempt to influence each others’ future play. Learn weight functions

\[\kappa_i^t(s^{-i}) = \kappa_{i-1}^t(s^{-i}) + \begin{cases} 1 & \text{if } s_{t-1}^{-i} = s^{-i} \\ 0 & \text{otherwise} \end{cases} \]

Calculate probabilities of the other player playing various moves as:

\[\gamma_i^t(s^{-i}) = \frac{\kappa_i^t(s^{-i})}{\sum_{\tilde{s}^{-i} \in S^{-i}} \kappa_i^t(\tilde{s}^{-i})} \]

Then choose the best response action.

Fictitious Play (contd.)

If fictitious play converges, it converges to a Nash equilibrium.

If the two players ever play a (strict) NE at time t, they will play it thereafter. (Proofs omitted)

If empirical marginal distributions converge, they converge to NE. But this doesn't mean that play is similar!

<table>
<thead>
<tr>
<th>t</th>
<th>Player1 Action</th>
<th>Player2 Action</th>
<th>κ_1</th>
<th>κ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>(1.5, 3)</td>
<td>(2, 2.5)</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>H</td>
<td>(2.5, 3)</td>
<td>(2.3, 5)</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>H</td>
<td>(3.5, 3)</td>
<td>(2.4, 5)</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>(4.5, 3)</td>
<td>(3.4, 5)</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>H</td>
<td>(5.5, 3)</td>
<td>(4, 4.5)</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>H</td>
<td>(6.5, 3)</td>
<td>(5.4, 5)</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>T</td>
<td>(6.5, 4)</td>
<td>(6.4, 5)</td>
</tr>
</tbody>
</table>

Cycling of actions in fictitious play in the matching pennies game

Universal Consistency

Persistent miscoordination: Players start with weights of $(1, \sqrt{2})$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0, 0</td>
<td>1, 1</td>
</tr>
<tr>
<td>B</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

A rule ρ^i is said to be ϵ-universally consistent if for any ρ^{-i}

$$\lim_{T \to \infty} \sup_{\sigma^i} \max_{\gamma^i} u^i(\sigma^i, \gamma^i) - \frac{1}{T} \sum_{t} u^i(\rho^i_t(h_{t-1})) \leq \epsilon$$

almost surely under the distribution generated by (ρ^i, ρ^{-i}), where h_{t-1} is the history up to time $t - 1$, available for the decision-making algorithm at time t.
Back to Experts

Bayesian learning cannot give good payoff guarantees.

- Suppose the true way your opponent’s actions are being generated is not in the support of the prior — want protection from unanticipated play, which can be endogenously determined.

- The Bayesian optimal method guarantees a measure of learning something close to the true model, but provides no guarantees on received utility.

- Can use the notion of experts to bound regret!

Define universal expertise analogously to universal consistency, and bound regret (lost utility) with respect to the best expert, which is a strategy.

The best response function is derived by solving the optimization problem

$$\max_{\mathcal{I}^i} \bar{u}_t^i + \lambda v^i(\mathcal{I}^i)$$

\bar{u}_t^i is the vector of average payoffs player i would receive by using each of the experts

\mathcal{I}^i is a probability distribution over experts

λ is a small positive number.

Under technical conditions on v, satisfied by the entropy:

$$-\sum_s \sigma(s) \log \sigma(s)$$

we retrieve the exponential weighting scheme, and for every ϵ there is a λ such that our procedure is ϵ-universally expert.