Computer Science 2300: Data Structures and Algorithms

RPI, Spring 2009
Instructor: Sanmay Das

Course Structure

- 2 lectures (MTh 12-1:30) and 1 lab (W — must attend your assigned lab)
- Small lab projects (-6), plus -8 homeworks (20% + 35% of grade)
- One midterm (20%), plus a final exam (25%)

What is this class about?

- Thinking like a computer scientist
 - Continuing the transition from programmer
- Learning how to approach problems
- NOT about code. We assume you are competent in C++

Textbooks

- Primary: *Algorithms* by Dasgupta, Papadimitriou, and Vazirani (more readable) [DPV]
- Secondary: *Introduction to Algorithms* by Cormen, Leiserson, Rivest and Stein (more encyclopedic) [CLRS]
- Any programming reference you need, but none assigned (suggestion, Stroustrup)
Prerequisites

- CS2 and Discrete Structures
- Taking Discrete Structures right now?
 - Motivated? Confident about picking up discrete math quickly?
 - Check the appendices in CLRS
- Programming: you won’t need any new tricks, but there will be little handholding!

Syllabus and Course Policies

- Role of labs
- You are responsible for all announcements made in lecture, posted on the website, or sent via e-mail
- Late-day policy
- Collaboration policy
- Grading policies

Staff

- My office hours: Mondays after class. Plus by appointment
- TAs: Eyuphan Bulut and Ashok Sukumaran
 - Primary point of contact: your lab TA
 - Available during lab (OH in non-lab weeks, but not this week) and by appointment
 - UTAs will be available during labs to help you out

Lectures

- I strongly encourage attendance. You are responsible for everything discussed.
- I’m a big fan of questions. Both receiving them and posing them.
- If no one answers my questions I will wait as long as it takes until someone does
Data Structures & Algorithms

- MCDXLVIII + DCCCXII = ?
- Answer: MMCCLX
- How did you do it? 1448 + 812 = 2260?

Addition, contd.

- Note that representation is key (sort of like a data structure)
- Algorithms operate on data
- Decimal addition is easy, roman numeral addition is not!

A Brief Tour of the Class

- Introduction. Correctness and running time analysis
- Divide-and-conquer algorithms. How to reduce problems.
 - Faster integer multiplication (!)
 - Sorting
 - Median-finding

Graph Algorithms

- Why graphs?
 - Encapsulate many problems
 - The web!!
- Graph representations
 - Lists or matrices?
- Exploring graphs and finding short paths
Data Structures

• More familiar, but more advanced material, which will be coupled with interesting new algorithms:
 • Heaps
 • Trees
 • Hash tables

More advanced algorithms

• Dynamic programming
 • Introduction to NP-completeness — when can we (probably) not solve a (large) problem exactly?

Analysis of Algorithms

• Two things we care deeply about:
 • Proving correctness
 • Analyzing running time

Fibonacci Numbers

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
• From rabbit reproduction to Vedic metre...
• Rule:
 • $F_n = F_{n-1} + F_{n-2}$, $n > 1$
 • $F_n = 1$, $n = 1$
 • $F_n = 0$, $n = 0$
Some Properties

- Grow almost as fast as powers of 2!
- $F_n = 2^{0.694n}$
- F_{100} is 21 digits long!

How to compute F_n?

- function $\text{fib}(n)$
 - if $n = 0$: return 0
 - if $n = 1$: return 1
 - return $\text{fib}(n-1) + \text{fib}(n-2)$
- Correctness?
- Time taken?

Time

- $T(n)$: # computer steps taken to compute $\text{fib}(n)$
- $T(n) \leq 2$ for $n \leq 1$
- $T(n) = T(n-1) + T(n-2) + 3$ for $n > 1$
- $T(n) \geq F_n$!!
- This is very bad news. Exponential complexity!

Why so slow?

\[
\begin{array}{c}
F_n \\
F_{n-1} \quad F_{n-2}
\end{array}
\]

\[
\begin{array}{c}
F_{n-3} \\
F_{n-4} \\
F_{n-5}
\end{array}
\]

\[
\begin{array}{c}
\vdots
\end{array}
\]
A Better Algorithm

- if n = 0 : return 0
- create an array f[0...n]
- f[0] = 0, f[1] = 1
- for i = 2...n:
 - f[i] = f[i-1] + f[i-2]
- return f[n]

Running Time?

- Linear!
- Caveat:
 - When does it stop making sense to think of each computer operation as 1 time unit?
 - F_n is about 0.694 bits long. We'll quickly exceed 32 (or even 128) bits, so can't just assume one operation.

Big-O Notation

- f(n), g(n) : functions from integers to reals
- f is O(g) if \(\exists \) (positive) constants c and n_0 such that f(n) ≤ c g(n) for n ≥ n_0
- Intuition: f grows no faster than g
Analogs

- $f = \Omega(g) : g = O(f)$
- $f = \Theta(g) : f = O(g)$ and $g = O(f)$
- Small o: strictly slower growth

Rules of Thumb

- Exponentials dominate polynomials
- Polynomials dominate logs
- n^a dominates n^b if $a > b$
- Omit multiplicative constants

Maximum Subsequence Sum

- Given a sequence of integers A_1, \ldots, A_n, find the maximum value of $\sum_{k=i}^{j} A_k$
- Example: $-2, 11, -4, 13, -5, -2$
- Answer: 20

Algorithm 1

- maxSum = 0
- for i in 0:n-1
 - for j in i:$n-1$
 - thisSum = 0
 - for k in i:j
 - thisSum = thisSum + $a[k]$
 - if (thisSum > maxSum)
 - maxSum = thisSum
Running Time?

- Simple analysis: 3 loops, one inside the other, each of worst case size n: $O(n^3)$
- More sophisticated: still $O(n^3)$

\[
\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \sum_{k=i}^{n-1} 1 = ?
\]

\[
\sum_{j=i}^{n-1} 1 = j - i + 1
\]

\[
\sum_{j=i}^{n-1} (j - i + 1) = \frac{(n-i+1)(n-i)}{2}
\]

\[
\sum_{i=0}^{n-1} (n - i + 1)(n - i) = \frac{n^4 + 2n^2 + n}{6}
\]

An O(n) Algorithm

- maxSum = 0
- for i in 0:n-1
 - thisSum = 0
 - for j in i:n-1
 - thisSum = thisSum + a[j]
 - if (thisSum > maxSum)
 - maxSum = thisSum
 - else if (thisSum < 0)
 - thisSum = 0
- return maxSum

Why Does This Work?

- Key observation: Any negative subsequence cannot be a prefix of the optimal subsequence. We compute the maximum subsequence ending at position j

- Whenever a subsequence first becomes negative, we can reset and consider only subsequences that start beyond j (why?)