1. (15 points) CLRS Problem 17.3-3 (page 416). [Hint: Consider using a potential function of the form \(kn \ln n \)].

2. (10 points) CLRS Problem 19.2-8 (pages 472-473).

3. (10 points) DPV Problem 1.29 (page 40)

4. (10 points) Consider the recurrence relation for the minimum number of nodes in an AVL tree:
 \[T(n) = T(n - 1) + T(n - 2) + 1 \]
 for \(n > 1 \), \(T(0) = 1 \), \(T(1) = 2 \). Show that
 \(T(n) = \Theta(F(n)) \)
 where \(F(n) \) denotes the \(n \)th Fibonacci number.

5. (15 points) Consider a simplified version of the substring matching problem. Given a length \(n \) string (called the target \(T \)) composed exclusively of decimal digits 0 through 9, and a (smaller) length \(m \) string (called the pattern \(P \)) also composed only of decimal digits, we want to find out whether or not \(P \) occurs as a substring of \(T \). If we find \(P \) as a substring of \(T \) we can immediately return “Yes” and terminate.

 (a) Write down a naive \(O(mn) \) algorithm for this problem.

 (b) Assuming that arithmetic operations on \(m \)-digit numbers take constant time, design an \(O(n) \) algorithm for this problem.

 (c) Now consider what happens as \(m \) gets larger. Can you use the idea of universal hashing to come up with an algorithm that works in expected time \(O(n) \) for this problem? (Hint: work modulo some prime \(q \) so that \(10q \) fits within one computer word – you can assume that arithmetic operations on numbers that fit within one computer word can be performed in constant time. You may also assume that the probability that a random number is congruent to some given \(p \) modulo \(q \) is \(1/q \)). Give an analysis of the expected running time if the pattern does not exist in the target. What is the worst case running time of this algorithm?