Notes on Binary Heaps

February 15, 2008

(Adapted partially from Cormen et al’s Introduction to Algorithms).
Suppose we’re creating a (Max) heap with \(n \) elements to be placed in it. Here’s an algorithm

\[
\text{makeheap}(h) \quad (h \text{ is an array containing } n \text{ values to be placed in the heap, in arbitrary order})
\]

\[
\text{for } i \text{ in } \lfloor n/2 \rfloor \text{ downto 1 do }
\]

\[
\text{heapify}(h, i)
\]

\[
\text{end for}
\]

\[
\text{heapify}(A, i)
\]

\[
l = \text{LEFT}[i]; r = \text{RIGHT}[i]
\]

\[
\text{if } (l \leq \mid A \mid \text{ AND } A[l] > A[i]) \text{ then }
\]

\[
largest = l
\]

\[
\text{else }
\]

\[
largest = i
\]

\[
\text{end if}
\]

\[
\text{if } (r \leq \mid A \mid \text{ AND } A[r] > A[largest]) \text{ then }
\]

\[
largest = r
\]

\[
\text{end if}
\]

\[
\text{if } (largest \neq i) \text{ then }
\]

\[
\text{swap}(A[i], A[largest])
\]

\[
\text{heapify}(A, largest)
\]

\[
\text{end if}
\]

\[
\text{Algorithm 1: Algorithm for (max) heap creation}
\]

To prove correctness, we introduce the following \textit{loop invariant}:
At the start of the loop in \textbf{makeheap}, each node \(i + 1, i + 2, \ldots, n \) is the root of a max-heap.

At initialization, this is obvious, because every element in the array with index greater than \(i \) is a leaf node. To show maintenance of the invariant, we know that \(i \)'s children \(l \) and \(r \) are the roots of max-heaps to start. \textbf{heapify} only swaps (recursively down) if one is greater than \(i \), thereby maintaining the max-heap property. At termination, \(i = 0 \), so the node with index 1 is the root of a max-heap (which contains all the elements).

Naive run-time analysis: There are \(n \) calls to the \(O(\log n) \) \textbf{heapify}, so it is \(O(n \log n) \). But this \(\log n \) is worst case behavior. We can improve on this analysis and get a tighter upper bound.

\textbf{heapify} takes time \(O(h) \) when called on a node of height \(h \) (that is, when the node is the root of a heap of height \(h \)). How many nodes are there of height \(h \)? Convince yourself that the answer is \(\lceil n/2^{h+1} \rceil \) (for \(h = \log n \) this gives 1, for \(h = 0 \) this gives \(\lceil n/2 \rceil \), etc.)

So now suppose we sum over all heights the product of two things: the number of nodes of that height, and the amount of time \textbf{heapify} takes on one call to a node of that height. This should
give us the total running time. Working it out:

\[
\sum_{h=0}^{\log n} \left\lceil \frac{n}{2^h+1} \right\rceil O(h) = O \left(n \sum_{h=0}^{\log n} \frac{h}{2^h} \right)
\]

Now,

\[
\sum_{h=0}^{\log n} \frac{h}{2^n} < \sum_{h=0}^{\infty} h \left(\frac{1}{2} \right)^h = 2
\]

How do we get this last step? From \(\sum_{h=0}^{\infty} h x^h = \frac{x}{(1-x)^2}\) for \(x < 1\), which can be obtained by differentiating both sides of the sum of an infinite geometric progression.

Putting this into the equation above, we get a better bound for the running time: \(O(n)!\)