Digital Systems and Information Representation
CSE 102

What is Binary?
• Underlying base signals are two-valued:
 - 0 or 1
 - true or false (T or F)
 - high or low (H or L)
• One “bit” is the smallest unambiguous unit of information
• Propositional calculus helps us manipulate (operate on) these base signals

Operations in Propositional Calculus
AND \(a \cdot b = c \)
\(a \) is true if \(a \) is true \text{and} \(b \) is true

OR \(a + b = c \)
\(c \) is true if \(a \) is true \text{or} \(b \) is true

NOT \(a' = b \)
\(b \) is true if \(a \) is false

An Example
\(a \) passed microeconomics course
\(b \) passed macroeconomics course
\(c \) passed economics survey course
\(d \) met economics requirement
\[d = a \cdot b + c \]

Boolean Algebra
• Boolean algebra (named after 19th century mathematician George Boole) lets us manipulate and reason about expressions of propositional calculus
• Systems based on this algebraic theory are called “digital logic systems”
• All modern computer systems fall in this category

Physical Representation
• Positive logic convention
 - Binary value (1 or 0) is represented by the voltage on a wire (H or L)
 - true, 1 voltage greater than threshold \(V_H \)
 - false, 0 voltage less than threshold \(V_L \)
 - Voltage gap between \(V_H \) and \(V_L \) provides safety margin to limit errors
That’s Not Enough!

• We are interested in representing signals that have more than just two values
 – numbers
 – text
 – images
 – audio
 – video
 – and much more
• Let’s look at a sequence of number systems (unveiling some history in the process)

Start with “counting” numbers

• 1, 2, 3, ... (positive integers)
• good at measuring how much stuff I have
 – e.g., 7 cows and 2 goats
• closed under addition and multiplication
 – if a,b are numbers, a + b is too
 – if a,b are numbers, a × b is too

What if I don’t have any stuff?

• incorporate 0 into number system
 – I have 0 pigs
• still closed under addition and multiplication
• how do we represent zero in Roman numerals?
 – we don’t!
 – the Romans hadn’t yet invented zero

What if I take away more than I have?

• new concept: negative numbers
 – I owe my neighbor 3 chickens, vs.
 – I own -3 chickens
• closed under subtraction as well
• can solve equation x + a = 0 for any integer a

Why can’t I divide my stuff 3 ways?

• incorporate rational numbers
 – I have 2 pigs, so when I die...
 – each of my 3 sons gets 2/3 pig
• now closed under division
• can now solve equation ax + b = 0 for arbitrary numbers a,b if a ≠ 0

How long is this line?

• incorporate irrational numbers
• defined “real” numbers
• can now solve equation x² – 2 = 0
• Note pattern of names:
 – positive to negative
 – rational to irrational
But what about \(x^2 + 2 = 0 \)?

- introduce complex numbers
- vector number system with 2 components:
 - \((a, b)\) a, b both “real” numbers
- obey following rules:
 - equality: \((a, b) = (c, d)\) iff \(a = c\) and \(b = d\)
 - addition: \((a, b) + (c, d) = (a + c, b + d)\)
 - multiplication: \((a, b) \times (c, d) = (ac - bd, ad + bc)\)

Interesting fact

- complex numbers with 2\(^{nd}\) component equal 0 have same properties as “real” numbers
 \((a, 0) = (c, 0) \) iff \(a = c\)
 \((a, 0) + (c, 0) = (a + c, 0)\)
 \((a, 0) \times (c, 0) = (ac, 0)\)

What name to use?

- 1\(^{st}\) component of complex number is called “real”, why not follow the historical naming conventions?
 - \(\neg\) positive \(\Rightarrow\) negative
 - \(\neg\) rational \(\Rightarrow\) irrational
 - \(\neg\) real \(\Rightarrow\) imaginary
- therefore, 2\(^{nd}\) component of complex number came to be called “imaginary”

Back to our equation

- What about the equation we were trying to solve? \(x^2 + 2 = 0 \)
- First, rewrite as equation in complex numbers \(x^2 + (2, 0) = (0, 0) \)
- Second, insert \(x = (0, \sqrt{2}) \)
 \((0, \sqrt{2})^2 + (2, 0) = (0, \sqrt{2}) \times (0, \sqrt{2}) + (2, 0) = (-2, 0) + (2, 0) = (0, 0) \) \(\checkmark\)

Another interesting manipulation: \(x^2 + 1 = 0 \)

- Initial algebraic manipulation yields:
 \(x^2 + 1 = 0 \)
 \(x^2 = -1 \)
 \(x = \sqrt{-1} \)
- Now try with \(x = (0, 1) \):
 \((0, 1)^2 + (1, 0) = (0, 1) \times (0, 1) + (1, 0) = (-1, 0) + (1, 0) = (0, 0) \) \(\checkmark\)
- Therefore, \(x = (0, 1) = \sqrt{-1} \)

New notation for complex numbers

- Let symbol \(i = \sqrt{-1} \)
- \((a, b)\) can now be written \(a + ib \)
- since \(a + ib = (a, 0) + (0, 1) \times (b, 0) = (a, 0) + (0, b) = (a, b) \)
- Note: EEs use \(j = \sqrt{-1} \), the rest of the known universe uses \(i = \sqrt{-1} \). Why is that?
How powerful are complex numbers?

- We now have a number system rich enough to solve arbitrary constant coefficient polynomial equations:
 \[a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n = 0 \]

- If \(a \)'s complex-valued, \(n \geq 1 \), and \(a_0 \neq 0 \), there are precisely \(n \) roots in complex number system
 “Fundamental Theorem of Algebra”

How do we represent these numbers?

- A positional number system lets us represent integers. E.g., in base 10:
 \[xyz_{10} = x \cdot 10^2 + y \cdot 10^1 + z \cdot 10^0 \]
 \[= x \cdot 100 + y \cdot 10 + z \]
 \(x, y, z \) can each have 10 possible values: 0 to 9

Base 2 (binary) works the same way

\[xyz_2 = x \cdot 2^2 + y \cdot 2^1 + z \cdot 2^0 \]
\[= x \cdot 4 + y \cdot 2 + z \]

\(x, y, z \) can each have 2 possible values: 0 or 1

E.g.,

- 000 = 0
- 001 = 1
- 010 = 2
- 011 = 3
- 100 = 4
- 101 = 5
- 110 = 6
- 111 = 7

Negative numbers

- With a fixed number of bits, one can represent negative numbers in a variety of ways.
E.g., 4-bit binary number system:

 - unsigned range 0 to 15 (0000 to 1111)
 - unsigned integers with \(n \) bits range 0 to \(2^n - 1 \)

 - offset or bias (e.g., -7) range -7 to 8
 - subtract fixed amount (such as midpoint value) generally bad for computation

4-bit Sign-Magnitude

1st bit encodes sign (0 = positive, 1 = negative)

bits 2, 3, 4 magnitude \(\Rightarrow \) range 0 to 7 (000 to 111)

overall range -7 to +7
what about 1000? -0!

with \(n \) bits, use \(n-1 \) bits for magnitude range \(-(2^{n-1} - 1) \) to \(+(2^{n-1} - 1) \)

issues:
 - two representations for “0”, +0 and -0
 - need significant hardware to support add, subtract

2’s (radix) complement

- Use negative weight for 1st bit:
 \[wxyz = w \cdot -(2)^3 + x \cdot 2^2 + y \cdot 2^1 + z \cdot 2^0 \]
 \[= w \cdot -8 + x \cdot 4 + y \cdot 2 + z \]

 - overall range -8 to +7
 - 1st bit is still sign bit, with 0 = positive and 1 = negative
 - only one zero: 0000
Properties of 2’s complement

- least significant n-1 bits have unaltered meaning (i.e., standard positional notation and weights apply)
- most significant bit has weight negated (instead of weight 2^{n-1}, it is weight -2^{n-1})
- range $-(2^{n-1})$ to $+(2^{n-1}-1)$
- negation operation: flip all bits, add 1, throw away carry

<table>
<thead>
<tr>
<th>binary</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
</tr>
</tbody>
</table>

-2 in 4-bit 2’s complement notation?