Real-Time Wireless Control Networks for Cyber-Physical Systems

Chenyang Lu
Cyber-Physical Systems Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
Wireless Control Networks

- Receive sensor data
- Send control command

- Real-time
- Reliability
- Control performance
Industrial Wireless Networks

1.5+ billion hours operating experience

Hundreds of Thousands of Smart Wireless field devices

Tens of Thousands of Wireless Field Networks

Courtesy: Eric Rotvold, Emerson
Outline

- WirelessHART: real-time wireless in real industry
- Real-time scheduling theory for wireless
- Wireless-control co-design
- Case study: wireless structural control
WirelessHART

Industrial wireless standard for monitoring and control
Characteristics

- Reliable in hash industrial environments
 - Time Division Multiple Access
 - Multi-channel
 - Route diversity
 - No concurrent transmission in a same channel

- Centralized network manager
 - Collects topology information from the network
 - Generates routes and global transmission schedule
 - Reconfigures when devices/links break
Real-Time Scheduling for Wireless

Goals
- Real-time transmission scheduling → meet end-to-end deadlines
- Fast schedulability analysis → online admission control and adaptation

Approach
- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results
- Dynamic priority scheduling [RTSS’10]
- Fixed priority scheduling
 - End-to-end delay analysis [RTAS’11]
 - Priority assignment [ECRTS’11]
Real-Time Scheduling for Wireless

Goals
- Real-time transmission scheduling → meet end-to-end deadlines
- Fast schedulability analysis → online admission control and adaptation

Approach
- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results
- Dynamic priority scheduling [RTSS’10]
- Fixed priority scheduling
 - End-to-end delay analysis [RTAS’11]
 - Priority assignment [ECRTS’11]
Real-Time Flows

- Flow: sensor \rightarrow controller \rightarrow actuator over multi-hops

- A set of flows $F=\{F_1, F_2, ..., F_N\}$ ordered by priorities

- Each flow F_i is characterized by
 - A source (sensor), a destination (actuator)
 - A route through the controller
 - A period P_i
 - A deadline $D_i (\leq P_i)$
 - Total number of transmissions C_i along the route
Scheduling Problem

- Fixed priority scheduling: transmissions ordered by the priorities of their flows.

Flows are schedulable if \(R_i \leq D_i \) \(\forall F_i \in F \)

Goal: efficient delay analysis
- Gives an upper bound of the end-to-end delay for each flow
- Used for online admission control and adaptation
End-to-End Delay Analysis

- A lower priority flow is delayed due to:
 - channel contention: when all channels are assigned to higher priority flows in a slot
 - transmission conflict: two transmissions involve a same node

- Analyze each type of delay separately

- Combine both delays \Rightarrow end-to-end delay bound
Insights

- Flows vs. Tasks
 - Similar: channel contention
 - Different: transmission conflict

- Channel contention \rightarrow multiprocessor scheduling
 - A channel \rightarrow a processor
 - Flow F_i \rightarrow a task with period P_i, deadline D_i, execution time C_i
 - Leverage existing response time analysis for multiprocessors

- Need to account for delays due to transmission conflicts
Delay due to Conflict

- When low priority flow F_l and high priority flow F_h, conflict, F_l is delayed

- $Q(l,h)$: #transmissions of F_h sharing nodes with F_l
 - In the worst case, F_h can delay F_l by $Q(l,h)$ slots
 - e.g., $Q(l,h) = 5 \Rightarrow F_h$ can delay F_l by 5 slots
Acceptance Ratio

Fraction of test cases deemed schedulable based on analysis or simulations

![Graph showing acceptance ratio versus percentage of source or destination nodes.](image)
Wireless-Control Co-Design

Goal: optimize control performance over wireless

Challenge

- Wireless resource is scarce and dynamic
- Cannot afford separating wireless and control designs

Cyber-Physical Systems Approach

- Holistic co-design of wireless and control

Examples

- Rate selection for wireless control [RTAS’12, TECS]
- Wireless structural control [ICCPS’13]
Rate Selection for Wireless Control

- Optimize the sampling rates of control loops sharing a WirelessHART network.

- Rate selection must balance control and network delay
 - Low sampling rate → poor control performance
 - High sampling rate → long delay → poor control performance
Control Performance Index

- Digital implementation of control loop i
 - Periodic sampling at rate f_i
 - Performance deviates from continuous counterpart

- Control cost of control loop i under rate f_i [Seto RTSS’96]
 - Approximated as $\alpha_i e^{-\beta_i f_i}$ with sensitivity coefficients α_i, β_i

- Overall control cost of n loops $\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}$
The Rate Selection Problem

- Formulated as a constrained non-linear optimization

- Determine sampling rates \(f = \{ f_1, f_2, \ldots, f_n \} \) to

Minimize control cost

\[
\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}
\]

subject to

\[
R_i \leq P_i \quad \text{Delay bound}
\]

\[
f_i^{\text{min}} \leq f_i \leq f_i^{\text{max}}
\]
In terms of decision variables (rates), the delay bounds are

- Non-linear
- Non-convex
- Non-differentiable

The optimization problem is thus non-convex, non-differentiable, not in closed form.
Relax delay bound to simplify optimization!

- Derive a **convex** and **smooth**, but less precise delay bounds.
- Rate selection becomes a convex optimization problem.
Evaluation

- Greedy heuristic is fast but incurs higher control cost.
- Subgradient method is neither efficient nor effective.
- Simulated annealing incurs least control cost, but takes a long time.
- Convex approximation balances control cost and execution time.
Case Study: Wireless Structural Control

- Structural control systems protect civil infrastructure.
- Wired control systems are costly and fragile.
- Wireless structural control (WSC) offers flexibility and low cost.

Heritage tower crumbles down in earthquake of Finale Emilia, Italy, 2012.

Hanshin Expressway Bridge after Kobe earthquake, Japan, 1995.
Contributions [ICCPS’13]

- **Wireless Cyber-Physical Simulator (WCPS)**
 - Capture dynamics of both physical plants and wireless networks
 - Enable holistic, high-fidelity simulation of wireless control systems
 - Integrate TOSSIM and Simulink/MATLAB
 - Open source: http://wcps.cse.wustl.edu

- **Realistic case studies on wireless structural control**
 - Wireless traces from real-world environments
 - Structural models of a building and a large bridge
 - Excited by real earthquake signal traces

- **Cyber-physical co-design**
 - End-to-end scheduling + control design
 - Improve control performance under wireless delay and loss
Bill Emerson Memorial Bridge: Physical Model

- Main span: 1,150 ft.
- Carries up to 14,000 cars a day over the Mississippi River.
- In the New Madrid Seismic Zone
- Replaced joints of the bridge by actuators
- 24 Hydraulic actuators
- Vibration mode:
 - 0.1618 Hz for 1st mode
 - 0.2666 Hz for 2nd mode
 - 0.3723 Hz for 3rd mode
Jindo Bridge: Wireless Traces

- Largest wireless bridge deployment [Jang 2010]
 - 113 Imote2 units; Peak acceleration sensitivity of 5mg – 30mg
- RSSI/noise traces from 58-node deck-network for this study
Reduction in Max Control Power

Cyber-physical co-design \rightarrow 50% reduction in control power.
Conclusion

- Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 - Field deployments world wide

- Real-time scheduling theory for wireless
 - Leverage real-time processor scheduling
 - Incorporate unique wireless properties

- Cyber-physical co-design of wireless control systems
 - Near rate selection for wireless control systems
 - Scheduling-control co-design for wireless structural control

- WCPS: Wireless Cyber-Physical Simulator
 - Enable holistic simulations of wireless control systems
 - Realistic case studies of wireless structural control
Future Directions

- Scaling up wireless control networks
 - From 100 nodes → 10,000 nodes
 - Dealing with dynamics locally
 - Hierarchical or decentralized architecture

- A theory and practice for wireless control
 - From case studies to unified theory & methodology
 - Bridge the gap between theory and systems
 - From theory → robust implementation → deployment
For More Information

- **Real-Time Scheduling for Wireless**

- **Wireless-Control Co-Design**

- **Case Study on Wireless Structural Control**
 - CPS Project on Wireless Structural Monitoring and Control: http://bridge.cse.wustl.edu
 - Wireless Cyber-Physical Simulator: http://wcps.cse.wustl.edu

- **Cyber-Physical Systems Laboratory**: http://cps.cse.wustl.edu

- **Home Page**: http://www.cse.wustl.edu/~lu