Real-Time Cloud Computing

Chenyang Lu

Cyber-Physical Systems Laboratory
http://www.cse.wustl.edu/~lu/
Internet of Things

Convergence of

- **Miniaturized hardware**: integrate processor, sensors and radios.
- **Low-power wireless**: connect millions of devices to the Internet.
- **Data analytics**: make sense of sensor data.
- **Cloud**: scalable computing.

Internet of Things

Convergence of

- **Miniaturized hardware**: integrate processor, sensors and radios.
- **Low-power wireless**: connect millions of devices to the Internet.
- **Data analytics**: make sense of sensor data.
- **Cloud**: scalable computing.

IoT-Driven Control

- Internet of Things → large-scale real-time control
 - Smart manufacturing, smart transportation, smart grid…
 - Need **real-time cloud computing** for IoT!

- Example: Intelligent Transportation
 - Collect data from cameras and roadside detectors.
 - Analyze traffic dynamics and optimize traffic signals.
 - Control traffic signals.
 - SCATS @ Sydney: controlling 3,400 signals at 1s round-trip latency.
Embedded System Virtualization

- Consolidate 100 ECUs \rightarrow ~10 multicore processors.
- Integrate multiple systems on a common platform.
 - Infotainment on Linux or Android
 - Safety-critical control on AUTOSAR
- Preserve real-time performance on a virtualized platform!

Cloud is real-time today

- Virtualization platforms provide no guarantee on latency
 - Xen: credit scheduler, [credit, cap]
 - VMware ESXi: [reservation, share, limitation]
 - Microsoft Hyper-V: [reserve, weight, limit]

- Clouds lack service level agreement on latency
 - Amazon, Google, Microsoft cloud services: #VCPUs

Current clouds provision resources, not latency!
Towards Real-Time Cloud

- Support real-time applications in the cloud.
 - Latency guarantees for tasks running in virtual machines (VMs).
 - Real-time performance isolation between VMs.
 - Resource sharing between real-time and non-real-time VMs.

- Multi-level real-time performance provisioning.
 - RT-Xen → real-time VM scheduling on a virtualized host.
 - VATC → real-time network I/O on a virtualized host.
 - RT-OpenStack → real-time cloud resource management.
Xen

- **Xen**: type-1, baremetal hypervisor
 - Domain-0: drivers, tool stack to control VMs.
 - Guest Domain: para-virtualized or fully virtualized OS.

- **Scheduling hierarchy**
 - Xen schedules VCPUs on PCPUs.
 - Guest OS schedules threads on VCPUs.
 - Xen credit scheduler: round-robin with proportional share.
RT-Xen

- Real-time schedulers in the Xen hypervisor.
- Provide real-time guarantees to tasks in VMs.
- Incorporated in **Xen 4.5** as the real-time scheduler.

Compositional Scheduling

- Analytical real-time guarantees to tasks running in VMs.
- VM resource interfaces
 - A set of VCPUs each with resource demand $<\text{period, budget}>$
 - Hides task-specific information
 - Computed based on compositional scheduling analysis

Diagram:
- Hypervisor
 - Resource Interface
 - Scheduler
 - Workload
- Virtual Machines
 - Resource Interface
 - Scheduler
 - Workload
Real-Time Scheduler Design

- Global scheduling
 - Allow VCPU migration across cores
 - Work conserving – utilize any available cores
 - Migration overhead and cache penalty

- Partitioned scheduling
 - Assign and bind VCPUs to cores
 - Cores may idle when others have work pending
 - No migration overhead or cache penalty

- Enforce resource interface through budget management
 - Periodic server vs. deferrable server

- Priority: Earliest Deadline First vs. Deadline Monotonic
• Xen misses deadlines at 22% of CPU capacity.

• RT-Xen delivers real-time performance at 78% of CPU capacity.
Virtualized Network I/O

- Xen handles all network traffic through Dom0
- Real-time and non-real-time traffic share Dom0
 - CPU and network contention
- Long delays for real-time traffic in virtualized hosts
Network I/O in Virtualized Hosts

- Linux Queueing Discipline
 - Rate-limit and shape flows
 - Prioritization or fair packet scheduling

- Priority inversion in virtualization components
 - between transmissions
 - between transmission and reception

- VATC: Virtualization-Aware Traffic Control
 - Process packets in prioritized kernel threads
 - Dedicated packet queues per priority

Real-Time Traffic Latency

VATC reduces priority inversion \Rightarrow lower latency for real-time traffic.

- Median round-trip latency of real-time traffic.
- CPU contention from two small-packet interfering streams.
Virtualized Host ➔ Cloud

- Provide real-time performance to real-time VMs
- Achieve high resource utilization
OpenStack Limitations

- Popular open-source cloud management system

- VM resource interface
 - Number of VCPUs
 - Not real-time

- VM-to-host mapping
 - Filtering (admission control)
 - VCPU-to-PCPU ratio (16:1), max VMs per host (50)
 - Coarse-grained admission control for CPU resources
 - Ranking (VM allocation)
 - Balance memory usage
 - No consideration of CPU resources
RT-OpenStack

- Co-hosting real-time VMs with non-real-time VMs

- Deliver real-time performance
 - Support RT-Xen resource interface
 - Real-time-aware VM-to-host mapping

- Achieve high resource utilization
 - Co-locate non-real-time VMs with real-time VMs
 - Non-real-time VMs consume remaining resources *without* affecting the real-time performance of real-time VMs

RT-OpenStack: VM-to-Host Mapping

- Admission control: RT-Filter
 - Accept real-time VMs based on schedulability and memory
 - Consider only accepted real-time VMs

- VM allocation: RT-Weigher
 - Balance CPU utilization
 - Consider only accepted real-time VMs

<table>
<thead>
<tr>
<th>Resource Interface</th>
<th>Admission Control</th>
<th>VM Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time VMs</td>
<td>{<period, budget>}</td>
<td>Schedulability + Memory</td>
</tr>
<tr>
<td>Non-Real-Time VMs</td>
<td>Best Effort</td>
<td>Memory</td>
</tr>
</tbody>
</table>
OpenStack

- Overload four hosts with real-time VMs → deadline misses.
- Two hosts running non-real-time VMs only.
- Unbalanced distribution of real-time domains.

![Graph showing CPU utilization](image)
Schedulability guarantees for real-time VMs → no deadline miss.
Distribute real-time VMs across hosts.
Hadoop makes progress using remaining CPU resources.

Hadoop finish time: 435 seconds
Real-time Cloud Stack

- **RT-Xen**: real-time VM scheduling in virtualized hosts.
- **VATC**: real-time network I/O in virtualized hosts.
- **RT-OpenStack**: real-time cloud resource management.
End-to-End Real-Time for IoT

- Miniaturized hardware → real-time embedded systems
- Low-power wireless → real-time wireless
- Data analytics → real-time analytics
- Cloud → real-time service chains from edge to cloud

Large-Scale IoT-driven Control
→ Smart Manufacturing, City, Grid…