Dependable Internet of Things

Chenyang Lu

Cyber-Physical Systems Laboratory

Department of Computer Science and Engineering
Industrial IoT for Industry 4.0

- 5.9+ billion hours operating experience
- 26,200+ wireless field networks
 [Emerson]

- $944.92 million by 2020
 [Market and Market]

Courtesy: Emerson Process Management
WirelessHART

- Reliability and predictability
 - Multi-channel TDMA MAC
 - One transmission per channel
 - Redundant routes
 - Over IEEE 802.15.4 PHY

- Centralized network manager
 - Collect topology information
 - Generate routes and schedule
 - Change when devices/links break

Industrial wireless standard for process automation
The Control Challenge

Most of today’s industrial wireless networks are for monitoring.

Dependable control requires

• **real-time**
• **control performance**
• **resilience to loss**

Source: https://www.automation.com
Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient wireless control under loss.

*Cannot be accomplished by wireless or control design alone ➔

Cyber-Physical Co-design of Wireless and Control
Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient wireless control under loss.

Cannot be accomplished by wireless or control design alone →
Cyber-Physical Co-design of Wireless and Control
The Real-Time Problem

- A feedback control loop incurs a flow F_i
 - Route: sensor \rightarrow ... \rightarrow controller \rightarrow ... \rightarrow actuator
 - Generate packet every period P_i
 - Multiple control loops share a network

- Each flow must meet deadline $D_i (\leq P_i)$
 - Stability and predictable control performance

- Research problems
 - Real-time transmission scheduling \rightarrow meet end-to-end deadlines
 - Fast schedulability analysis \rightarrow adapt to wireless dynamics through admission control and rate adaptation
Delays in WirelessHART

A transmission is delayed by

- **channel contention**: all channels are assigned to other transmissions
- **transmission conflict** over a same node
 - contributes significantly to latency!

- 1 and 5 conflict
- 4 and 5 conflict
- 3 and 4 do not
Fast Delay Analysis

- Compute upper bound of the delay for each flow
 - Sufficient condition for real-time guarantees

- Channel contention \rightarrow multiprocessor task scheduling
 - A channel \rightarrow a processor
 - Flow F_i \rightarrow a task with period P_i, deadline D_i, execution time C_i
 - Leverage existing response time analysis for multiprocessors

- Account for delays due to transmission conflicts

Delay due to Conflict

- Low-priority flow F_l and high-priority flow F_h conflict \rightarrow delay F_l

- $Q(l,h)$: #transmissions of F_h sharing nodes with F_l
 - In the worst case, F_h can delay F_l by $Q(l,h)$ slots

- Conflicts contributes significantly to delays
 - Delay analysis [TC 2015]
 - Scheduling [RTSS 2010]
Real-Time Wireless Networking

- **WirelessHART stack in TinyOS** [IoTJ 2017]
 - Implementation on a 69-node testbed
 - Network manager (scheduler + routing)

- **Energy-efficient routing** [IoTDI 2016]

- **Emergency communication** [ICCPS 2015]

- **Channel selection** [INFOCOM 2017]

Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient wireless control under loss.

Cannot be accomplished by wireless or control design alone ➔ Cyber-Physical Co-design of Wireless and Control
Optimize Control over Wireless

Observation
- Wireless resource is scarce and dynamic
- Cannot afford separating wireless and control designs

Cyber-Physical Co-Design
- Holistic co-design of wireless and control

Examples
- Rate selection for wireless control [TECS 2014]
- Scheduling-control co-design [ICCPS 2013]
Rate Selection for Wireless Control

- Optimize the sampling rates of control loops sharing a WirelessHART network.

- Rate selection must balance control and network delay.
 - Low sampling rate → poor control performance
 - High sampling rate → long delay → poor control performance
Control Performance Index

- Digital implementation of control loop i
 - Periodic sampling at rate f_i
 - Performance deviates from continuous counterpart

- Control cost of control loop i under rate f_i [Seto RTSS’96]
 - Approximated as $\alpha_i e^{-\beta_i f_i}$ with sensitivity coefficients α_i, β_i

- Overall control cost of n loops: $\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}$

Interface between cyber and physical designs!
The Rate Selection Problem

- Constrained non-linear optimization

- Determine sampling rates \(f = \{ f_1, f_2, \cdots, f_n \} \)

minimize control cost \(\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i} \)

subject to \(delay_i \leq 1 / f_i \) \(\text{Delay bound} \)

\(f_i^{\text{min}} \leq f_i \leq f_i^{\text{max}} \)
Polynomial Time Delay Bounds

- In terms of decision variables (rates), the delay bounds are:
 - Non-linear
 - Non-convex
 - Non-differentiable
Cyber-Physical Co-Design

- Relax delay bound to simplify control optimization
- Derive a convex and smooth, but less precise delay bound.
- Rate selection becomes a convex optimization problem.

Optimize control performance efficiently at run time!

Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient control under data loss.

This cannot be accomplished by wireless or control design alone → Cyber-Physical Co-design of Wireless and Control
Resilient Control under Data Loss

- Data loss causes instability and degrades control performance.

- Addressed in separation
 - Control: control design to tolerate data loss.
 - Wireless: redundancy reduces loss at high resource cost.
 - But how much redundancy is sufficient?

- Cyber-physical co-design
 - Incorporate resilient control design
 - Tailor wireless protocols for control design
 - Resilient wireless control at low resource cost
State Observer estimates system states based on a system model even if there is no new data from sensors.

Handle Data Loss from Controller

- **Model Predictive Control**
 - Controller computes control inputs in the next $w+1$ sampling periods: $u(k), u(k+2), \ldots, u(k+w)$.
 - Actuator applies $u(k)$.

- **Buffered actuation**
 - Actuator buffers previous control inputs $u(k+1), \ldots, u(k+h)$ ($h \leq w$).
 - Applies buffered control input if updated input is lost.
 - Buffer size of $h \rightarrow$ tolerate h consecutive packet loss.
Exothermic Reaction Plant

Plant: nonlinear chemical reaction
Control input: u_1 and u_2
Objective: Maintain temperature in Tank 2

Wireless Cyber-Physical Simulator (WCPS)
- Integrate TOSSIM and Simulink
- Capture dynamics of both wireless networks and physical plants
- Holistic simulations of wireless control
- Open source: wcps.cse.wustl.edu
Impact of Data Loss from Sensor

System is highly resilient to packet loss from sensors

Extended Kalman filter under 60% loss from sensor
Actuation is **more sensitive** to data loss than sensing.

→ *Data losses are not equal!*

Actuation buffer (size 8) under 60% loss to actuator
Routing in WirelessHART

- Source routing: single path routing \rightarrow efficient but unreliable.
- Graph routing: every node on the primary path has a backup path \rightarrow reliable at cost of capacity and energy.
- Entire network uses a **uniform** routing strategy.

 - But sensing and actuation need **different** levels of reliability?!
Asymmetric Routing

- Differentiated routing for sensing and actuation

- State observer handles data loss from sensors

- Source routing from sensors
 - State observer compensates for lower reliability
 - Save network resource

- Actuation is more sensitive to data loss

- Graph routing to actuators
 - High reliability
 - High resource cost, but needed for control

Tailor routing to control
Spend wireless resource where control needs it
Maximum Absolute Error

(a) 5Hz Control

(b) 3Hz Control

-73dBm Noise

- Source/Graph performs close to Graph/Graph at 3Hz sampling rate.
- Efficiency allows higher sampling rate with Source/Graph → further improve control performance!

Towards Dependable Wireless Control

- Real-time, predictable wireless networking
 - Protocols and delay analysis for latency guarantees

- Optimize control performance over wireless
 - Incorporate scheduling analysis in rate selection

- Resilient wireless control under data loss
 - Tailor routing strategies for control needs

- Cyber-physical co-design helps overcome the dependability challenges!
Engineering Building Blocks

- Industrial IoT have arrived
 - WirelessHART, ISA100…
 - World-wide field deployments

- WirelessHART implementation and enhancements

- WCPS: Wireless Cyber-Physical Simulator
 - Enable holistic simulations of wireless control systems
Real-Time Cloud for Industrial IoT

- Support real-time applications in the cloud.
 - Latency guarantees.
 - Real-time performance isolation.
 - Resource sharing between real-time and non-real-time workloads.

- Real-time cloud stack.
 - RT-Xen → real-time virtual machine scheduling (*included in Xen*)
 - VATC → real-time network I/O on a virtualized host.
 - RT-OpenStack → real-time cloud resource management.
For More Information

- Wireless Cyber-Physical Simulator: http://wcps.cse.wustl.edu