Real-time Systems

- Many wireless sensor network applications require real-time support
 - Surveillance and tracking
 - Border patrol
 - Fire fighting
- **Real-time systems:**
 - Hard real-time: guarantee deadlines
 - Soft real-time: improve miss ratio
 - Differentiation

Real-time Systems

- Concerned with two aspects:
 - **Control**
 - RAP
 - **Prioritization**
 - SPEED
 - CODA

Modeling the sensor networks

- A sensor:
 - Limited memory
 - Limited processing
- **Communication:**
 - Scarce bandwidth
 - Voids exist
 - Energy intensive
 - Communication generates congestion hot-spots
 - MAC layer may provide QoS
 - end-to-end communication time depends on single-hop delay and the distance it has to travel

Modeling the sensor networks

- Tight integration with the physical world
- Location aware
- Communication patterns:
 - Local coordination
 - Sensors coordinate with one another (usually by defining a group) in order to aggregate data
 - Usually involves a small number of hops
 - Sensor-base communication
 - Sends data from the local group to the base station
 - Requires multiple hops
Contributions

- A high level architecture for large wireless networks
 - Ability to define queries
 - Use event services
- Velocity Monotonic Scheduling (VMS)
 - A policy for scheduling packets in a sensor network

Design Goals

- Provide APIs for micro-sensing and control
- Maximize the number of packets meeting their E2E deadlines
- Scale well to large number of nodes and hops
- Introduce minimum communication overhead

RAP Stack

Query/Event Service API

- Query
 - attribute list
 - area
 - time constraints
 - querier location
- When an event is detected, the query is started and periodically generates result

Location-Addressed Protocol

- Connectionless transport layer
- Address is based on geographic location
- Services:
 - Unicast
 - Deliver a node closest to the destination
 - Area multicast
 - Deliver to all nodes in an area
 - Area anycast
 - Deliver to any node in the area

Geographic forwarding

- Greedy algorithm
 - Selects the node with the shortest geographic distance to the packet's destination
 - At every step the packet gets closer to the destination
- Works really good for high density network
Velocity Monotonic Scheduling

- FCFS policy is generally used in sensor networks
 - Works poorly for real-time systems
- VMS
 - It is both deadline and distance aware
 - Assigns priority based on the requested velocity
 - A higher velocity denotes higher priority

Velocity Monotonic Scheduling (2)

- Static monotonic velocity (SMV)
 \[y = \frac{(x_i - x_j)^2 + (y_i - y_j)^2}{D} \]
- Dynamic monotonic velocity (DMV)
 \[T_j - \frac{(x_i - x_j)^2 + (y_i - y_j)^2}{D - D_j} \]

802.11 Overview

- 802.11 has two coordination functions
 - Point Coordination Function (PCF)
 - Distributed Coordination Function (DCF)
- Two access methods
 - Basic access method
 - RTS/CTS

802.11 Basic mechanism

- A station monitors the channel
 - If the channel is free for more than DIFS the station transmits
 - Before transmitting we wait for a random delay
 - Else, the channel continues to monitor the channel until it is free for DIFS
- To avoid capture effect, the station needs to wait for a period of time before sending the next packet
- Discrete time backoff as multiple of the number of slots
 - The size of the contention window increase exponentially with the number of failed attempts to send the message
- CW min – minimum contention window
- CW max = 2mCW min – maximum contention window

802.11 Basic mechanism (2)

- Exponential backoff
 - Chosen for an uniform distribution (0, w-1), where w is the contention window
 - The size of the contention window increases exponentially with the number of failed attempts to send the message
- We retry to resent the message when the backoff counter reaches zero
 - The backoff counter is decremented only when the channel is idle
 - The counter is reset to zero in the case of a successful transmission
MAC –layer prioritization

- When communicating multiple hosts compete for the shared medium
- In 802.11b all messages have the same priority
- To enforce packet prioritization MAC protocols should provide distributed prioritization on packets from different nodes
- We can change two parameters
 - The time you can wait after idle
 - DIFS = BASE_DIFS * PRIORITY
 - Backoff increase function
 - CW = CW/2 + [(PRIORITY-1)/MAX_PRIORITY]

Experiments

- Routing protocols
 - Dynamic Source Routing (DSR)
 - GF
- Scheduling
 - FCFS
 - DS – fixed priority based on their e2e deadline
 - Velocity Scheduling
 - DVS
 - SVS

Overall Miss Ratio of GF/DSR

![Graph showing overall miss ratio of DSR and GF with deadlines (5, 10)](image)

Using VMS

![Graphs comparing miss ratios of different scheduling methods](image)

State of the art

- Only a few real-time algorithms exist for sensor networks
- Routing based on sensor’s position
 - GPSR
 - GR
 - LAR
Design Goals

- Stateless
 - Information regarding the only the immediate neighbors
- Soft Real Time
 - Provides uniform speed delivery across the network
- Minimum MAC Layer support
- Traffic load-balancing
- Localized behavior
- Void avoidance

Speed Protocol

Soft Real-time

- Where is the time constraint?
 - “SPEED aims at providing a uniform packet delivery speed across the sensor network, so that the end-to-end delay of a packet is proportional to the distance between the source and destination. With this service, real-time applications can estimate end-to-end delay before making admission decisions. Delay differentiation for different classes of packets is left as future work.”
 - Try to send the packet at Ssetpoint

Delay estimation algorithm

- Due to scarce bandwidth cannot use probe packets
- Delay is measured at the sender as the difference between when the packet was queued and its ACK and the processing time on the receiver time
- Keeps track of multiple data points to compute the current delay using (EWMA): $\text{average} = \text{average} \times \alpha + \text{delay} \times (\alpha - 1)$

Delay estimation algorithm (2)

- Delay estimation beacon is used to communicate to other neighbors the estimated delay
 - Goal: allow nodes react to changes in traffic pattern [avoid congestion]

Neighbor beacon exchange scheme

- Periodically broadcasts a beacon to neighbors to exchange location information
 - In order to reduce traffic we can piggyback the information
 - Assume all neighbors fit in the neighborhood table
- Possible enhancement:
 - Advertising state changes may reduce number of beacons
 - On-demand beacons
 - Delay estimation
 - Back pressure pressure
- Fields:
 - Neighbor ID
 - Position
 - Send To Delay
 - TTL
SNGF

- Neighbor set of node i
 \[N_S = \{ a | d(i, a) < \text{samp}(0) \} \]

- Forwarding candidate set
 \[N_F = \{ a | d(i, a) < \text{samp}(0) \} \]
 - Where
 - $L = d(i, \text{destination})$
 - $L_{\text{next}} = d(\text{next}, \text{destination})$

- Relay speed
 \[\text{Speed}(\text{destination}) = \frac{L - L_{\text{next}}}{\text{HopDelay}} \]

SNFG(2)

If $|FS_i| > 0$

if $|Viable| > 0$

candidate = choose(Viable(FS_i))

send to candidate

else

compute relay ratio

if no nodes to support S_{setpoint}

drop packet if a random chosen between $(0, 1)$ is bigger than the relay ratio

} else

drop packets

send pressure beacon upstream

SNFG(3)

- Delay Bound = \(\frac{L_{\text{e2e}}}{S_{\text{setpoint}}} \)
 - Where:
 - L_{e2e} is the end-to-end Euclidian distance measured
 - S_{setpoint} the speed maintained across the network

- Drawbacks:
 - All messages have the same speed
 - Does not take into account the link quality [same issue as GF]
 - Better measure of congestion

Neighbor feedback loop

- Goal:
 - Maintain a single hop speed above a desired S_{setpoint}
 - S_{setpoint} is a network wide parameter that tunes how “harsh” the real-time requirements are

Neighbor feedback loop

- Rerouting due to pressure
 - The congested area is detected and the probability of sending to that node is limited

Back pressure rerouting
Back pressure rerouting(2)

- Issue:
 - Maybe reinforcement should refer to a geographic area rather than a node!

Other ways of thinking about congestion

- Congestion detection
 - Sampling
 - Queue length
- Backpressure
- Closed-loop multi-source regulation

Overall approach: Under a threshold there is no need to check for congestion. Above it, we want to detect and control congestion.

Void avoidance

- Voids occur if the density is not high enough
- Deals with voids similarly to hotspots by applying backbone pressure
- Several packets may be dropped when trying to avoid a void

Last mile processing

- Processing close to the destination area
 - Area anycast
 - Area multicast

E2E Miss Ratio

- Ssetpoint = 1km/s
- e2e deadline = 200 ms
Critiques and Possible Improvements

- Is the delay estimation correct?!?
- Combine SPEED and RAP
- Energy conservation is only secondary concern in the paper
- All neighbors can fit in the routing table
- Needs to be manually tuned
- Multiple velocities
- Can we do better for long running flows?
- How to handle mobile users?
- Can we use power control?
Questions?