Maximizing Network Lifetime of WirelessHART Networks under Graph Routing

Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah*, Mo Sha^, Paras Tiwari, Chenyang Lu, Yixin Chen

Cyber-Physical Systems Lab, Washington University in St. Louis
Missouri University of Science & Technology *
Binghamton University ^
Wireless for Process Automation

Emerson
• 5.9+ billion hours operating experience
• 26,200+ wireless field networks

$944.92 million by 2020
[Market and Market]

Offshore
Onshore

Killer App of IoT!

Courtesy: Emerson Process Management
Industrial Wireless Challenges

- Reliability
- Real-time
- Control performance
- **Energy efficiency:** need long battery life in harsh environments!
WirelessHART

- **Industrial reliability**
 - Multi-channel TDMA MAC
 - Over IEEE 802.15.4 PHY
 - **Redundant routes**

- **Centralized network manager**
 - collects topology information
 - generates routes and transmission schedule
 - disseminates to field devices
 - re-computes routes when topology changes

Industrial wireless standard for process monitoring and control
Graph Routing

- Handle link and node failures through path diversity
- Graph route of a flow
 - a primary path
 - a backup path for each node on the primary path

Transmissions per hop
- Two transmissions on the primary link – dedicated TDMA slots
- One transmission on the backup link – shared CSMA/CA slot
Energy Cost of Reliability

- Graph routing improves reliability at cost of energy
- Measurement: +57% reliability at $1.7 \times \text{energy}$ compared to single-path source routing [EWSN'15]
Challenges

- Maximize network lifetime under graph routing
 - Industry demands multi-year battery life
 - Efficient routing in response to wireless dynamics

- Unique challenges for WirelessHART networks
 - **Centralized multi-path** graph routing
 - Transmissions in **dedicated** and **shared** slots
Contributions

- Problem: network lifetime maximization under graph routing
 - Network lifetime = time till first node runs out of battery
 - NP hard

- Three approaches
 - Optimal integer programming
 - Linear relaxation of the integer programming
 - Efficient greedy heuristic

- Implementation on a WirelessHART testbed
Analyzing Power Consumption

- Model based on WirelessHART standard
- 1-2 transmissions on primary path
- 3rd transmission on back path
 - Small probability, but receiver must turn on and listen.
- **Load**: power consumption / battery capacity
Objective: max min node lifetime → min max load

Graph route as constraints
- An incoming primary link → an outgoing primary link
- An incoming primary link → an outgoing backup link
- An incoming backup link → an outgoing backup link

Optimal solution
- High computational cost → cannot scale to large networks
Linear Programming Relaxation

1. Relax binary decision variables to real numbers
2. Linear Programming \rightarrow real number solutions
3. Round real numbers to integer solutions based on threshold
4. Incrementally find the largest threshold with valid routes

- Implemented in GNU Linear Programming Kit (GLPK)

- Near optimal solution with affordable computational cost.
Greedy Heuristics

- Compute routes for flows in the rate monotonic order

- For each flow: find the graph route with minimum load
 - Load per node = power consumption / battery capacity
 - Incrementally add nodes with the smallest load to primary path and update neighbors’ load
 - Then select backup path with minimum load

- Iterate until no further improvement

- Polynomial complexity
Evaluation

- Implemented on a WirelessHART testbed (69 TelosB motes)
 - WirelessHART stack (multi-channel TDMA + routing)
 - Network manager (scheduler + routing)
- Simulations based on testbed topology
Compare to Optimal (Small Network)

- Lifetime normalized to optimal solution from Integer Programming
- 10 nodes, 20 links
- **SP**: Shortest Path
- **RRC** [Han 2011]
- **GH**: Greedy Heuristic
- **LP**: Linear Programming

GH & LP within 80% of optimal
LP and GH lead to longer network lifetime
GH needs less time than LP
Conclusion

- Industrial wireless networks is a killer app for IoT
 - Driven by industrial standards such as WirelessHART
 - Deployments rolling out worldwide

- Graph routing enhances reliability at high energy cost → energy efficiency is critical!

- Three approaches to maximize network lifetime
 - Integer Programming: optimal
 - Linear Programming Relaxation: faster
 - Greedy Heuristic: fastest solution for run-time adaptation

- Implemented with WirelessHART on testbed