Power Management under Coverage and Connectivity Constraints in Sensor Networks

Xiaorui Wang; Guoliang Xing; Yuanfang Zhang; Chenyang Lu; Robert Pless; Christopher D. Gill

Presented by: Guoliang Xing
Department of Computer Science & Engineering
Washington University in St Louis

Outline

- Motivation
- Coverage vs. Connectivity: Geometric Analysis
- Coverage Configuration Protocol (CCP)
- Applying CCP to realistic applications
- Routing performance
- Conclusion

Motivation

- Many sensor networks require long lifetime
 - Several months to years: habitat monitoring, civil structure monitoring, surveillance
- Energy is scarce
 - Low cost energy supply, e.g., AA batteries
 - Wireless communication is energy costly
- Continuous service
 - Sensing
 - Communication: network connectivity, routing

Approaches

- Duty cycle schedule
 - Example: SMAC
 - Cons: Long communication delay
- Active backbone
 - Use a small number of active nodes to provide “sufficient” service
 - Schedule other nodes to sleep
 - Examples: SPAN, CCP

“Sufficient” Service

- Sensing
 - N-coverage: every point in a region is covered (monitored) by at least N active sensors
- Communication
 - K-Connectivity: network is connected if (K-1) nodes fail
 - Routing quality: how many hops between two nodes?

Limitations of Existing Protocols

- Treat connectivity and coverage in isolation
 - Connectivity only: ASCENT, SPAN, AFECA, GAF, ...
 - Coverage only: exposure, Ottawa’s protocol, ...
 - Density: PEAS
- Lack flexibility: only provide fixed degree of coverage
Goals
- Design a protocol that guarantees desired **coverage** and **connectivity**
- Requirements
 - **Integrated**: must guarantee both coverage and connectivity
 - **Flexible**: can re-configure the network to different coverage degrees and connectivity
 - Meet diverse application requirements
 - **Decentralized**: achieve scalability

Assumptions
- The region to be covered is convex
- Disc models for coverage and communication
 - A point p is covered by a node v if |pv| < Rs
 - Rs: Sensing range
 - Nodes u and v are connected if |uv| < Rc
 - Rc: Communication range
- Intuition: range ratio Rc/Rs is important!

Outline
- Motivation
- Coverage vs. Connectivity: Geometric Analysis
- Coverage Configuration Protocol (CCP)
- Simulation results
- Routing performance
- Conclusion

Implication of Geometric Analysis
- Given a required coverage degree of Ks, and a required connectivity of Kc
- If Rs ≥ 2Rs, the protocol only needs to guarantee max(Ks, Kc) coverage configuration
 - Solution: Coverage Configuration Protocol (CCP)
- If Rs < 2Rs, the protocol must address both coverage and connectivity.
 - Solution: CCP + SPAN

Connectivity vs. Coverage
- A connected network does not guarantee coverage
 - Connectivity only concerns with node locations
 - Coverage must cover all locations in a region
 - True for any Rc/Rs
 - If Rc/Rs ≥ 2
 - K-coverage → K-connectivity for all nodes
 - K-coverage → 2K-connectivity for interior nodes
 - Interior node: a node whose sensing circle fully contained by the region

A Sufficient Condition for K-Coverage
- A convex region B is K-covered if all the intersection points among sensing circles and/or B’s boundary inside B are K-covered
- Implication: a coverage configuration protocol only needs to worry about intersection points!
K-Coverage Eligibility Rule

- All intersection points inside the sensing circle are K-covered?
- To evaluate eligibility, a node only needs to know the locations of active nodes within $2R_s$.

![Diagram of active nodes and intersection points](image)

Coverage Configuration Protocol (CCP)

- Active nodes periodically broadcast and receive beacon messages.
- Sleeping nodes periodically wake up and receive beacons.
- Change state based on the eligibility rule:
 - Active \Rightarrow sleeping if the eligibility rule is true.
 - Sleeping \Rightarrow active if the eligibility rule is false.

Simulation: Coverage Configurability

![Graph showing coverage configurability](image)

- CCP strictly enforces desired coverage degrees!

SPAN

- All nodes periodically broadcast/receive beacons.
- Change state based on the eligibility rule:
 - Active \Rightarrow sleeping if the eligibility rule is false.
 - Sleeping \Rightarrow active if the eligibility rule is true.
- Eligibility rule:
 - At least one pair of my neighbors cannot reach each other either directly or via one or two active nodes.
 - Every sleeping node is within one hop of at least one active node.

CCP+SPAN

- When $R_c < 2R_s$, CCP cannot guarantee connectivity.
- Solution: CCP + SPAN
- Combined eligibility rule:
 - Sleeping \Rightarrow active if either CCP or SPAN activates the node.
 - Active \Rightarrow sleeping if both CCP and SPAN put the node to sleep.

Simulation: Coverage+Connectivity ($R_c = 1.5R_s$)

- Combination of SPAN & CCP is necessary for desired coverage and connectivity when $R_c < 2R_s$.
Simulation: Coverage vs R_c/R_s

- CCP-based protocols guarantee coverage for all R_c/R_s
- SPAN's cannot guarantee coverage for any R_c/R_s

Simulation: Connectivity vs R_c/R_s

- SPAN-based protocols delivers more packets
- CCP cannot delivery all packets when $R_c/R_s < 2$

Outline

- Motivation
- Coverage vs. Connectivity: Geometric Analysis
- Coverage Configuration Protocol (CCP)
- Applying CCP to realistic applications
- Routing performance
- Conclusion

Realistic Detection Applications

- Requirements: detection prob., false alarm rate
- Probabilistic sensing range
 - Stochastic signals/noises
 - Signal decay
 - Usually determined from empirical measurements
- Multi-sensor data fusion
 - Single sensor may be faulty and cause false alarms
 - Reliable detection decision should base on multiple sensor readings
 - Fusion rule: how to reach a final decision based on multiple sensor readings?

Applying CCP to Realistic Detection Applications

- Probabilistic sensing model
 - A point within the sensing range of a sensor is covered with prob. P
- Application requirement: (K, β) coverage
 - $\text{Prob}(\text{target is detected}) \geq \beta$
 - Target detected if sensed by at least K sensors
- Solution: run CCP with coverage degree K' given by:
 \[1 - \frac{\binom{K'}{i}}{\binom{K}{i}} P^i (1 - P)^{K - i} \geq \beta \]
Illustration: Applying CCP to Realistic Detection Applications

- The probability is sensed by 2 sensors must > 0.95
- Each sensor senses with prob. 0.9
- How many sensors are needed to cover?

\[P = 0.9, K = 2, \beta = 0.95, K' = ? \]

Scalability and Performance

Impact of Sensing Coverage on Routing Performance

Outline

- Motivation
- Coverage vs. Connectivity: Geometric Analysis
- Coverage Configuration Protocol (CCP)
- Applying CCP to realistic applications
- Routing performance
- Conclusion

Greedy Geographic Forwarding

- Forward packet to the neighbor with the shortest Euclidean distance to destination

Pros and Cons of Greedy Forwarding

- Local decision based on neighbor locations
 - Allow efficient implementation on constrained platforms
 - Match location-centric communication paradigm in WSN
- Fail when a packet reaches a local minima
 - A node cannot find a neighbor better than itself
 - Recovery schemes: face routing, flooding
 - Result in long routes
- Does greedy geo-routing perform better on sensing-covered networks?
- Can we establish analytical performance bounds?
Routing Metric: Network Dilation

- Network dilation of a graph under a routing algorithm
- Definition
 \[D_n = \max_{u,v} \left(\frac{|u,v|}{R_{uv}} \right) \]
 - \# of hops found by a routing algorithm
 - \min \# of hops
- Low \(D_n \) means good routing algorithm
- For any two nodes \(u \) and \(v \), a path no longer than \(D_n \) hops can be found by a routing algorithm whose network dilation is \(D_n \)

Greedy Forwarding in Networks with Coverage

- GF always succeeds when \(R_c/R_s > 2 \)
- \# of hops between \(u \) and \(v \):
 \[R - 2R_s \]

Do Better than Greedy Geo-routing

- Voronoi Diagram of a set of nodes \(V \) partitions the plane into Voronoi regions, one for each node.
- A point lies inside \(u \)'s Voronoi region if \(u \) is the closest node to the point.
- Delauney Triangulation (DT) is the dual graph of Voronoi diagram of \(V \)
 - An edge between \(u \) and \(v \) in DT iff Vor(u) and Vor(v) share a boundary
 - The Euclidean distance of shortest path from \(u \) to \(v \) in DT < 2.42 \(|uv| \)
- Theorem: DT is a sub-graph of the network with sensing coverage
- Good routing algorithm is possible by taking advantage of DT

Bounded Voronoi Greedy Forwarding (BVGF)

- A neighbor is eligible only if its Voronoi region intersects the line joining source and destination
- Greedy: choose the eligible neighbor closest to destination

Conclusion

- Geometric analysis on relationship between coverage and connectivity
 - Only need to worry about coverage when \(R_c \geq 2R_s \): Coverage Configuration Protocol
 - Must worry about both when \(R_c < 2R_s \): CCP + SPAN
 - CCP can be applied to realistic applications
 - Sensing coverage implies good routing property
 - Simple greedy geo-routing works well
 - Justifies power management protocols that maintain sensing coverage
 - Source can compute bound on network distance based on source/destination locations
 - Scalable real-time communication
Critiques

- Circular sensing/communication range
- Need more realistic sensing model (see CoGrid paper: www.cs.wustl.edu/~xing)
- Geometric routing may not work well when communication links are unreliable
- No evaluation on motes