Running Real-Time Tasks in Linux (x86 and ARM)

TA for class CSE 520S, Fall, 09/13/2016

Chong Li
Real-Time Tasks

- **Task**: a sequence of jobs
 - **Period**
 - **Worst case execution time**
 - **Deadline** (usually equals period)

- **Scheduler**
 - **Static priority**: RM
 - **Dynamic priority**: EDF
 - **Preemptive vs. non-preemptive**

1. Periodically triggered tasks?
2. Worst case execution time?
3. Scheduler setup?
4. Deadline miss?

A real time task with period of 5, execution time of 2, and deadline of 4
1. Periodically Triggered Task

- Video decoding, sensor processing, etc.
- https://s3-us-west-2.amazonaws.com/cse520s.com/Period_task.c

```c
struct sigaction sa;
...
sa.sa_sigaction = work;
sigaction(SIGRTMIN, &sa, NULL);
...
struct sigevent timer_event;
timer_event.sigev_signo = SIGRTMIN;
...
timer_create(CLOCK_REALTIME, &timer_event, &timer);
timer_settime(timer, TIMER_ABSTIME, &timerspec, NULL);
...
```

- Many other approaches in pointers
2. Workload for Tasks – Setup

- Minimize interference/uncertainties
 - Turn off unnecessary services
 - Bluetooth, network, graphic, etc
 - Fix CPU frequency
 - CPU frequency scaling
 - https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
 - CPU frequency governors
 - http://www.mjmwired.net/kernel/Documentation/cpu-freq/governors.txt
 - Disable in BIOS (SpeedStep for Intel, PowerNow for AMD)
 - Set to Performance/Custom/PowerSave
 - `ls /sys/devices/system/cpu/cpu0/cpufreq/`
 - `echo performance > /sys/devices/system/cpu/cpu0/cpufreq/governers`
2. Workload for Tasks – Programs

- Simulated workload
 - WCET benchmarks
 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
 - SNU real-time benchmarks
 http://www.cprover.org/goto-cc/examples/snu.html
 - MiBench benchmarks http://www.eecs.umich.edu/mibench/
 https://wiki.litmus-rt.org/litmus/Publications

- CPU intensive workload
 - Measure workload for 1 ms, then scale to any milliseconds workload
 - Note: need to tune for each individual machine

```c
for (i = 0; i < 9300; i++)
    temp = sqrt((double)i*i);
```
3. Scheduler Setup – Basic

- Two classes, would always schedule RT class first
 - RT class: static priority, 1 (lowest) to 99 (highest)
 - Preemptive scheduling
 - SCHED_FIFO, SCHED_RR to schedule processes with same priority
 - Can be used to implement static priority (like rate monotonic)
 - Does not support EDF by default
 - Reserve 5% for other classes
 - `/proc/sys/kernel/sched_rt_period_us` 1000000
 - `/proc/sys/kernel/sched_rt_runtime_us` 950000

- Non-RT class: SCHED_OTHER with Complete Fair Scheduler
3. Scheduler Setup – Preemptive

- Scheduler is triggered every HZ quantum

- `cat /boot/config-* | grep CONFIG_HZ`
 - For most desktops, value is 1000. ticked every 1ms
 - For arm processors, value is usually 100. ticked every 10 ms

- `CONFIG_NO_HZ = y`
 - Temporarily disable timer interrupt when system is idle or there is only single task running

- `CONFIG_HIGH_RES_TIMERS = y`
 - http://elinux.org/High_Resolution_Timers

- Can recompile kernel to change these values
3. Scheduler Setup – Priorities

➢ chrt command (can also check task priorities)
 - sudo chrt –f –p 99 4800 # pid 4800 with priority 99 and fifo

➢ sched_scheduler [http://linux.die.net/man/2/sched_setscheduler]

```c
#include <sched.h>

int main() {
...
   struct sched_param sched;
   sched.sched_priority = 99;
   if (sched_setscheduler(getpid(), SCHED_FIFO, &sched) < 0) {
      exit(EXIT_FAILURE);
   }
...
}
```
3. Scheduler Setup – Affinities

- taskset command (can also check task affinities) [http://linux.die.net/man/2/sched_setscheduler]
 - `sudo taskset -c 2,3 4800` # pid 4800 runs on cores 2-3

- sched_setaffinity [http://linux.die.net/man/2/sched_setscheduler]

```c
#include <sched.h>

int main() {
  ...
  unsigned long mask = 1;
  if (sched_setaffinity(getpid(), sizeof(mask), &mask) < 0) {
    exit(EXIT_FAILURE);
  }
  ...
}
```
4. Measure Deadline Miss

- `gettimeofday()`
 - http://linux.die.net/man/2/sched_setscheduler
 - return struct timeval, includes tv_sec and tv_usec
 - not ok for measuring overhead on standard kernel configuration

- `rdtsc`
 - read CPU cycles directly (need to fix CPU frequency)
 - cat `/proc/cpuinfo` to get CPU frequency
 - on a 1GHZ CPU, ticks 1,000,000,000 times per second
 - if you use rdtsc to record time, pay attention to this value
 - cat `/proc/cpuinfo` # get CPU frequency
 - cat `/sys/devices/system/clocksource/clocksource0` # get current clock
Demo

- /proc/cpuinfo
- /proc/sys/kernel/sched_rt_*
- /sys/devices/system/clocksource/clocksource0/
- /sys/devices/system/cpu/cpufreq
- /sys/devices/system/cpu/cache/
- /boot/config*
- /dev/shm
Get a Linux (Virtual) Machine, run a real-time task

- wcet is around 100ms
- period is 200ms
- duration is 1000ms (5 jobs)
- priority is 99
- https://s3-us-west-2.amazonaws.com/cse520s.com/Period_task.c
- Add #define _GNU_SOURCE to enable CPU_ZERO/CPU_SET
- Compile demo task (g++ period_task.c –lrt)
 - –lrt –lm

You need to change cpu_freq, workload, etc!
Raspberry Pi

- ARM based Linux box
- Model B ($35)
 - 700 MHz, single core
 - 512 MB RAM
Raspberry Pi – CPU

- cat /proc/cpuinfo
 - ARMv6 compatible processor rev 7 (v61)

- ls /sys/devices/system/cpu/cpu0/cpufreq/
 - cur, max, min freq
 - scaling_governor

- uname –a
 - Linux raspberrypi 3.6.11+ #371 PREEMPT Thu Feb 7 16:31:35 GMT 2013 armv6l GNU/Linux
 - Linux Preempt-RT patch: https://rt.wiki.kernel.org
 - Minimize scheduling latency
Raspberry Pi – Clock

- `/sys/devices/system/clocksource/clocksource0/available_clocksource`
 - stc, software simulated clock, ticked every 1 microseconds

- `cat /proc/config.gz | gzip –d | grep HZ`
 - `CONFIG_NO_HZ = y` # when idle, tickles to save energy
 - `CONFIG_HZ = 100` # tick every 10 ms
Raspberry Pi – Summary

- Single core processor: no need to set cpu_masks
- Fixed frequency: no need to change frequency governor
- No rdtsc()
 - Need to record time using other functions calls like gettimeofday, clock_gettime(), etc
 - Minimum time resolution provided is 1 microseconds via stc
 - Default scheduling tick is 10 ms (compared to 1 ms on Desktop)
- Comes with Preempt-RT patch by default
 - Less scheduling latency, more responsive to I/O tasks
More on Raspberry Pi

- Survey: extra monitor with hdmi? Keyboard? Mouse?
 - Monitor with vga?

- Connect to raspberry pi remotely (IP known)
 - http://blog.oscarliang.net/setup-raspberry-pi-for-remote-access/
 - Default user: pi, password: raspberry

- Automatically boardcast IP
 - http://elinux.org/RPi_Email_IP_On_Boot_Debian
Pointers

- **Periodically running a task**
 - https://s3-us-west-2.amazonaws.com/cse520s.com/Period_task.c
 - http://www.embedded-linux.co.uk/tutorial/periodic_threads

- **Video players**
 - https://wiki.litmus-rt.org/litmus/Publications

- **Get time in Linux**
 - `gettimeofday`: http://linux.die.net/man/2/gettimeofday

- **Fix CPU frequencies**
 - http://www.mjmwired.net/kernel/Documentation/cpu-freq/governors.txt
 - https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
Pointers

- Linux schedulers

- Set priority
 - sched_scheduler: http://linux.die.net/man/2/sched_setscheduler

- Set CPU affinity on multi-core:
 - taskset: http://linux.die.net/man/1/taskset

- Linux real-time patches:
 - RTAI: https://www.rtai.org/
 - SCHED_DEADLINE: http://gitorious.org/sched_deadline
Raspberry Pi

- clock: http://blog.remibergsma.com/2013/05/12/how-accurately-can-the-raspberry-pi-keep-time/
- source code: https://github.com/raspberrypi/linux
- recompile kernel: http://elinux.org/RPi_Kernel_Comilation