Configurable Real-Time Middleware for Distributed Cyber-Physical Systems

Chenyang Lu
CSE 520S

Motivation

- Cyber-Physical Systems (CPS) require integrated design of computing & physical systems.
- Challenge: Diversity of CPS applications
 - Avionics, automobile, manufacturing, medical, power grid...
 - Different CPS applications need different middleware configurations.
 - Existing real-time middleware provides fixed sets of services.
 - Real-Time CORBA, Real-Time Java, CORBA Component Model.
- Goal: configurable middleware for diverse CPS applications.
 - Tailor middleware services to specific needs of a CPS application.
 - Facilitate integrated design of CPS.

Outline

- Middleware architecture
- Alternative service strategies
 - encapsulated in configurable middleware components
- Map CPS application characteristics to service strategies
 - supported by configuration tools
- Implementation and empirical evaluation

Application Model

- End-to-End Task $T_i = \text{chain of subtasks} (T_{i,1}, T_{i,2}, ..., T_{i,k})$
 - Aperiodic or periodic
 - Subject to end-to-end deadline
 - Example: Subtask triggered by event from predecessor
- Job: an instance of a task

Middleware Architecture

Task manager
 - Admission Control (AC)
 - Load Balancing (LB)
Application processors
 - Idle Releasing (IR)
 - Task Effector (TE)

Admission Control Strategies

- Admission test based on aperiodic utilization bound (Abedulahmet06)
 - Guarantee end-to-end deadlines of admitted tasks/jobs.
- AC per Task
 - Perform the admission test for an entire task when it arrives.
 - Example: Digital control.
 - Reserve capacity for all jobs of an admitted task \rightarrow no job skipping.
 - More pessimistic admission test.
- AC per Job
 - Perform the admission test for each job of a task.
 - Example: Non-critical image acquisition.
 - No reservation for a task \rightarrow may skip some jobs of a task.
 - Less pessimistic admission test.
Load Balancing Strategies

- Redirect events to replicas located on least loaded processors
- Light weight: No state synchronization among replicas.
- LB per Task
 - The path of a task is determined upon arrival → same path for all jobs.
 - Examples: Integral control, video.
 - Achieve state persistency between jobs.
 - Less performance benefit.
- LB per Job
 - Different jobs may be redirected to different paths.
 - Examples: Proportional control, image acquisition.
 - No state persistency between jobs.
 - More performance benefit.

CPS Applications ➔ Services

- Can tolerate job skipping?
 - Per Task AC (example: digital control)
 - Per Job AC (example: image acquisition)
- Component Replication?
 - No load balancing
 - Load balancing
- Require state persistency between jobs?
 - Per Job LB (example: Proportional control)
 - Per Task LB (example: Integral control)

Configuration Space

- 15 valid configurations ➔ difficult to configure manually!
- Some combinations are invalid: Per Task AC vs. Per Job LB

Configuration Tools

- Input: Application characteristics.
 - Does your application allow job skipping? [yes (Y), no (N)]
 - Does your application have replicated components? [yes (Y), no (N)]
 - Does your application require state persistence? [yes (Y), no (N)]
- Configuration Engine
 - Generate XML-based deployment plan
 - Avoid invalid combinations of strategies
- Deployment Engine (DAncE) [Deng07] executes deployment plan.

Component Middleware

- Based on OAO 0.6 [Wang04], open-source implementation of Light Weight CORBA Component Model (CCM) specification.
- Implemented real-time services as configurable components.
 - Supports real-time, aperiodic and periodic, end-to-end tasks.
Experimental Platforms

- **harry.cse**
 - Pentium4 2.53GHz
 - 1G RAM
 - 512KB cache
 - KURT-Linux 2.4.22

- **hermoine.cse**
 - Pentium4 2.80GHz
 - 1G RAM
 - 512KB cache
 - KURT-Linux 2.4.22

- **norbert.cse**
 - Pentium4 2.53GHz
 - 1G RAM
 - 512KB cache
 - KURT-Linux 2.4.22

- **ron.cse**
 - Pentium4 2.80GHz
 - 1G RAM
 - 512KB cache
 - KURT-Linux 2.4.22

- **neville.doc**
 - Pentium4 3.40GHz
 - 2G RAM
 - 2048KB cache
 - KURT-Linux 2.4.22

- **angelina.doc**
 - Pentium4 3.40GHz
 - 2G RAM
 - 2048KB cache
 - KURT-Linux 2.4.22

Imbalanced Workloads

- **AC_IR_LB**
 - **N**: None
 - **T**: Per Task
 - **J**: Per Job

- Easy to generate different configurations.
- Middleware configurations have significant impact on real-time performance.

Conclusions

- Configurable real-time middleware
 - Configuration tool maps application characteristics to middleware configurations
 - Components middleware implement configurable services
 - Facilitate integrated design of diverse CPS applications

Reference