Outline

- Control-theoretic Framework
- Service delay control on Web servers
- On-line data migration in storage servers
- ControlWare: adaptive QoS control middleware

Online Data Migration in Storage Servers

- Enterprise storage servers need to move data
 - System expansion
 - Application changes
- **Always-on:** e-business, global data centers
 - **Online** data migration

State of Practice

- Need to bound impact on applications!
- Slow I/O’s!!!
- E-mail server; DB...
- SAN
- New device
- Storage system
- Script
- Submover
- HP-UX LVM

The Problem

- Execute a given migration plan on-line
- Challenges
 - Keep data consistent
 - Bound impact on application performance
 - Complete migration quickly

Adaptive solution

- Feedback control loop: adapts migration speed based on application I/O latency
 - Enforce latency contract: Bounded average I/O latency
 - Complete migration in shortest time allowed by contract
- Standard control-theoretic design
 - Systematic methodology
 - Robust, analytically proven performance
- Handle different workloads and devices

Aqueduct

- E-mail server; DB...
- SAN
- I/Os
- Submover
- HP-UX LVM
- Application Latency Contract
- Migration plan
Monitor

- Measure applications' average I/O latency of each store in the last sampling window
 - Current implementation: trace replayer directly monitors I/O latencies
 - Can interface with performance monitoring tools (HP Openview)

Controller

- Compute error for each store i
 $$E_i(k) = P \cdot L_C - L_i(k)$$
 $0 < P < 1$: safety margin, related to burstiness
 k: represents the k^{th} sampling window
- Compute worst error
 $$E_{\text{max}}(k) = \min\{E_i(k)\}$$
- Integral controller computes new submove rate:
 $$R_m(k) = R_m(k-1) + K \cdot E_{\text{max}}(k)$$
 Control gain K: aggressiveness of rate change

Actuator

- Problem: fine-grained control of migration speed using HP-UX LVM
 - Divide store into small (32 MB) substores (LVs)
 - Submover moves substore using LVM silvering

 ![Silvering Diagram]

- Actuator enforces a submove rate by sleeping

 ![Sleeping Diagram]

Tuning controller parameters

- Approximate linear model
 $$\text{VL}(k+1) - \text{VL}(k) = G(R_m(k) - R_m(k-1))$$

- System profiling: Estimate G

- Construct transfer function

- Control Analysis
 - Compute K
 - Satisfy

- Stability
- Tracking: $\text{VL}(k) = P \cdot L_C$ in steady state
- Setting time

Experimental setup

- Aqueduct
 - HP-UX 11 & LVM
 - HP 9000-N4000 Server
 - 8 440MHz processors

- Fibre Channel

- Openmail I/O Trace

- Enterprise-scale storage server

Experiments

- Baselines: no sleeping between (sub)moves
 - Whole-store: move one store at a time
 - Sub-store: move one subtree at a time

- Constant: steady Poisson streams
 - Replace Logical Unit; migrate three 640-MB stores.

- Openmail: trace of an enterprise e-mail server running HP Openmail
 - Add Logical Unit; migrate a 1854 MB store and a 96 MB store
Chenyang Lu

Measure G \rightarrow Tune K

Process gain G: the slope of the curves
Control gain K

Constant: $K = 1.09$
Openmail: $K = 0.36$

Openmail: victim latency

Openmail: latency

Aqueduct uniformly better than baselines, but ...

Openmail: latency & submove rate

Load highest on new LU towards end of migration
By design, submove rate must be 1 or higher \Rightarrow controller is working correctly

Openmail: average latency

Openmail: latency CDF

Quality of Service in Unpredictable Computing Environments
Related work

- Simpler versions of the problem
 - Take (parts of) system offline
 - Migrate data in “quiet periods”
- Silvering in Logical Volume Manager [HP-UX LVM, VxVM]: maintain data consistency, no QoS guarantees
- Proportional I/O scheduling: hard to handle unpredictability
- MS Manners: no guarantees to important tasks
- Control-theory-based systems: distributed visual tracking, Web servers, e-mail server, database real-time processor scheduling ...

Summary

- Migration must be executed adaptively
 - Average I/O latency reduced by 76%
 - Contract violation ratio reduced by 78%
- Aqueduct is neither overly aggressive
 - Average victim latency 15% lower than latency contract
- Not overly conservative

Future

- More detailed sensitivity analysis
- Self-tuning controller
- Multi-dimensional QoS contracts

References