Self-Tuning Memory Management of A Database System

Yixin Diao
diao@us.ibm.com

IM 2009 Tutorial: Recent Advances in the Application of Control Theory to Network and Service Management
DB2 Self-Tuning Memory Management

- **Technical problems**
 - Large systems with varying workloads and many configuration parameters
 - Autonomic computing: systems self-management

- **Challenges from systems aspects**
 - Heterogeneous memory pools
 - Dissimilar usage characteristics

- **Challenges from control aspects**
 - Adaptation and self-design
 - Reliability and robustness
Load Balancing for Database Memory

Load Balancing
- Fairness \rightarrow optimal?
- Common measured output?

OLTP

\[
x_i = p_i \left(1 - e^{-q_i u_i}\right)
\]

\[
y_i = \frac{dx_i}{du_i} = p_i q_i e^{-q_i u_i}
\]
Constrained Optimization and Regulatory Control

Constrained Optimization

\[J = f(u_1, u_2, \ldots, u_N) \]

\[g(u_1, u_2, \ldots, u_N) = \sum_{i=1}^{N} u_i - U = 0 \]

\[h(u_1, u_2, \ldots, u_N) = u_i - b_i \geq 0 \]

Karush-Kuhn-Tucker conditions

\[L = f(u_1, u_2, \ldots, u_N) + \lambda g(u_1, u_2, \ldots, u_N) \]

\[+ \mu h(u_1, u_2, \ldots, u_N) \]

\[\frac{\partial L}{\partial u_i} = \frac{\partial f}{\partial u_i} + \lambda + \mu_i = 0 \]

\[\mu_i = 0 \text{ if } u_i > b_i \; ; \; \mu_i > 0 \text{ if } u_i = b_i \]

Regulatory Control

\[\frac{\partial f}{\partial u_i} - \frac{1}{N} \sum_{j=1}^{N} \frac{\partial f}{\partial u_j} = 0 \]
Dynamic State Feedback Controller

- State space model
 \[y(k + 1) = Ay(k) + B(u(k) + d^I(k)) \]

- Control error
 \[e(k) = \left(\frac{1}{N} 1_{N,N} - I \right) (y(k) + d^O(k)) \]

- Integral control error
 \[e_I(k + 1) = e_I(k) + e(k) \]

- Feedback control law
 \[u(k) = K_p e(k) + K_I e_I(k) \]
Incorporating Const of Control into Controller Design

Major cost: write dirty, move memory, victimize hot

Linear quadratic regulation (LQR)

\[J = \sum [e^T(k) e^T_1(k)] Q [e^T(k) e^T_1(k)]^T + u^T(k) R u(k) \]

Define Q and R regarding to performance

- Cost of transient load imbalances
- Cost of changing resource allocations
Adaptive Controller Design

Local linear model

\[y_i(k+1) = b_i(k)u_i(k) \]

Decentralized integral control

\[u_i(k+1) = u_i(k) - \frac{1-p}{b_i(k)} \left(y_i(k) - \frac{1}{N} \sum_{j=1}^{N} y_j(k) \right) \]
Experimental Assessment

- **OLTP workload: multiple (20) buffer pools**

- **DSS workload: various query lengths**

- **DSS workload: index drop**

 - **Execution time for Query 21 (10 stream avg)**

 - **ConfigAdvisor settings**
 - Ts = 26342s
 - **STMM tuning**
 - Ts = 10680s

 - > 2x improvement

 - Reduce 63%

 - avg = 959
 - avg = 2285
 - avg = 6206

- Increase TP from ~100 to ~250
Comparing Control and Optimization Techniques

Control-based approach

Local linear model

\[y_i(k+1) = b_i(k)u_i(k) \]

Decentralized integral control

\[u_i(k+1) = u_i(k) - \frac{1-p}{b_i(k)} \left(y_i(k) - \frac{1}{N} \sum_{j=1}^{N} y_j(k) \right) \]

Constraint enforcement (projection method)

\[d_i(k) = \frac{u_i(k)}{\sum_{j=1}^{N} u_j(k)} \left(U - \sum_{j=1}^{N} u_j \right) + u_i \]

- Less dependence on the model

Optimization-based approach

Gradient method

\[u(k+1) = u(k) + \lambda(k)p(k) \]

Projected gradient (quasi-Newton)

\[
\begin{align*}
p(k) &= -(H(k) - H(k)A^T(k)(A(k)H(k)A^T(k))^{-1}A(k)H(k))y(k) \\
\end{align*}
\]

Step length (modified Armijo rule)

\[\nabla f(u(k) + \lambda(k)p(k)) + p(k) \geq c_1 \nabla f(u(k))^T p(k) \]

- Strictly applies constrained optimization

Similarity in a simplified scenario

A(k)

\[
A(k) = \begin{bmatrix}
1 & 1 & \cdots & 1
\end{bmatrix}
\]

u(k)

\[
u(k) = \begin{bmatrix}
\frac{1}{N} & 0 & \cdots & 0 \\
0 & \frac{1}{N} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{N}
\end{bmatrix}
\]

\(u_i(k+1) = u_i(k) - \frac{\lambda(k)}{s_i(k)} \left(y_i(k) - \frac{1}{\sum_{j=1}^{N} s_j(k)} \sum_{j=1}^{N} y_j(k) \right) \)

Differences in design considerations

- “Pure” average vs. convex sum
- Pole location vs. Armijo rule
- Steady-state gain vs. Hessian matrix
Simulation Study: Comparison with Optimization Approach

<table>
<thead>
<tr>
<th>Control-based approach</th>
<th>Optimization-based approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory size</td>
<td></td>
</tr>
<tr>
<td>Total saved time</td>
<td></td>
</tr>
<tr>
<td>Control intervals</td>
<td></td>
</tr>
</tbody>
</table>

Without noise (single run):
- More robust and better uncertainty management

Effect of noise (multiple runs):
- Faster convergence, but more sensitive to noise
Summary

- **DB2 self-tuning memory management**
 - Interconnection, heterogeneity, adaptation and robustness, cost of control
 - Constrained optimization with a linear feedback controller
 - Experimental assessment for OLTP and DSS workloads