Feedback Control for Real-Time Systems

Chenyang Lu
Cyber-Physical Systems Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis

CPS Week 2013
Outline

- CPU Utilization Control for Distributed Real-Time Systems
 - Model Predictive Control

- Thermal Control for Real-Time Systems
 - Nested Control Design
Outline

- CPU Utilization Control for Distributed Real-Time Systems
 - Model Predictive Control

- Thermal Control for Real-Time Systems
 - Nested Control Design
Control for Distributed Real-Time Systems

- Common characteristics of computing problems
 - MIMO: multi-input (knobs), multi-output (objectives)
 - Coupling between objectives.
 - Constraints on knobs.

- Model Predictive Control
 - Optimization + Prediction + Feedback
Why CPU Utilization Control?

- Overload protection
 - CPU over-utilization \rightarrow system crash

- Meet response time requirement
 - CPU utilization < bound \rightarrow meet deadlines
Challenge: Uncertainties

- Execution times?
 - Unknown sensor data or user input

- Request arrival rate?
 - Aperiodic events
 - Bursty service requests

- Disturbance?
 - Denial of Service attacks

Control-theoretic approach

→ Robust utilization control in face of workload uncertainty
End-to-End Tasks in Distributed Systems

- Task T_i: sequence of subtasks $\{T_{ij}\}$ on different processors
 - Periodic: All the subtasks of a task run at a same rate.
- Task rate can be adjusted
 - Within a range
 - Higher rate \Rightarrow higher utility

![Diagram](image-url)
Problem Formulation

- \(B_i \): Utilization set point of processor \(P_i \) \((1 \leq i \leq n)\)
- \(u_i(k) \): Utilization of \(P_i \) in the \(k^{th} \) sampling period
- \(r_j(k) \): Rate of task \(T_j \) \((1 \leq j \leq m)\) in the \(k^{th} \) sampling period

\[
\min_{\{r_j(k)|1 \leq j \leq n\}} \sum_{i=1}^{n} (B_i - u_i(k))^2
\]

subject to rate constraint:

\[
R_{\min,j} \leq r_j(k) \leq R_{\max,j} \quad (1 \leq j \leq m)
\]
Single-Input-Single-Output (SISO) Control
Single Processor

Set point
\(U_s = 69\% \)

Task Rates
\(R_1: [1, 5] \text{ Hz} \)
\(R_2: [10, 20] \text{ Hz} \)

New in Distributed Systems

- Need to control utilization of multiple CPUs
- Utilization of CPUs are coupled due to end-to-end tasks
 → Replicating a SISO controller on all processors does not work!
- Constraints on task rates
EUCON: Multi-Input-Multi-Output Control

Control Design Methodology

1. Derive a dynamic model of the system
2. Design a controller
3. Analyze stability
Dynamic Model: One Processor

\[u_i(k) = u_i(k - 1) + g_i \sum_{T_{jl} \in S_i} c_{jl} \Delta r_j(k - 1) \]

- \(S_i \): set of subtasks on \(P_i \)
- \(c_{jl} \): estimated execution time of \(T_{il} \)
- \(g_i \): utilization gain of \(P_i \)
 - ratio between actual and estimated change in utilization
 - models uncertainty in execution times
Dynamic Model: Multiple Processors

\[u(k) = u(k-1) + GF\Delta r(k-1) \]

- **G**: diagonal matrix of utilization gains
- **F**: subtask allocation matrix
 - models the coupling among processors
 - \(f_{ij} = c_{ji} \) if task \(T_j \) has a subtask \(T_{ji} \) on processor \(P_i \)
 - \(f_{ij} = 0 \) if \(T_j \) has no subtask on \(P_i \)

\[
\begin{bmatrix}
T_1 & T_{11} \\
T_2 & T_{21} \\
& \end{bmatrix}
\begin{bmatrix}
& T_{22} \\
& T_3 \\
& T_{31} \\
& \end{bmatrix}
\]

\[
F = \begin{bmatrix}
c_{11} & c_{21} & 0 \\
0 & c_{22} & c_{31}
\end{bmatrix}
\]
Model Predictive Control

- Suitable for coupled MIMO control problems with constraints.

- Compute input to minimize cost over a future interval.
 - Cost function: tracking error and control cost.
 - Predict cost based on a system model and feedback.
 - Compute input subject to constraints.

- Optimization + Prediction + Feedback
Cost Function

- **Cost**

\[V(k) = \sum_{i=1}^{P} \left\| u(k + i) - \text{ref}(k + i) \right\|^2 + \sum_{i=0}^{M-1} \left\| \Delta r(k + i) - \Delta r(k + i - 1) \right\|^2 \]

- **Tracking Error**

- **Control Cost**

- **Reference trajectory**: exponential convergence to \(B \)

\[\text{ref}(k + i) = B - e^{-\frac{T_s}{T_{ref}} i} (B - u(k)) \]
Model Predictive Controller

At the end of each sampling period
- Compute inputs in future sampling periods
 \(\Delta r(k), \Delta r(k+1), \ldots, \Delta r(k+M-1) \)
 to minimize the cost function
- Cost is predicted using
 1. feedback \(u(k-1) \)
 2. approximate dynamic model
- Apply \(\Delta r(k) \) to the system

At the end of the next sampling period
- Shift time window and re-compute \(\Delta r(k+1), \Delta r(k+2), \ldots, \Delta r(k+M) \) based on feedback
EUCON Controller

Model Predictive Controller

System Model

Rate Constraints

Least Squares Solver

Cost Function

Reference Trajectory

\[
\begin{bmatrix}
B_1 \\
\vdots \\
B_n \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
u_1(k) \\
\vdots \\
u_n(k) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta r_1(k+1) \\
\vdots \\
\Delta r_m(k+1) \\
\end{bmatrix}
\]

Constrained optimization solver

Desired trajectory for \(u(k)\) to converge to \(B\)

Difference from reference trajectory

CPS Week 2013
Stability Analysis

- Stability: utilization of all processors converge to set points
- Derive stability condition \rightarrow range of G
 - Tolerable variation of execution times

\rightarrow Provides analytical assurance despite uncertainty
Stable System

execution time factor = 0.5
(actual execution times = \(\frac{1}{2} \) of estimates)
Unstable System

execution time factor = 7
(actual execution times = 7 times estimates)
Stability

- Stability condition ➔ tolerable range of execution times
- Analytical assurance on utilizations despite uncertainty

![Graph showing CPU utilization and error bars for actual execution times compared to estimation.](image)

Predicted bound for stability
FC-ORB Middleware

Workload Uncertainty

disturbance from periodic tasks

time-varying execution times
Processor Failure

1. Norbert fails.
2. move its tasks to other processors.
3. reconfigure controller
4. control utilization by adjusting task rates
Summary: Model Predictive Control

- Application to CPU utilization control
 - Robust utilization control for distributed systems
 - Handle coupling among processors
 - Enforce constraints on task rates
 - Analyze tolerable range of execution times

- Applicable to many computing problems
 - MIMO: multi-input (knobs), multi-output (objectives)
 - Coupling between objectives
 - Constraints on knobs
Outline

- CPU Utilization Control for Distributed Real-Time Systems
 - Model Predictive Control

- Thermal Control for Real-Time Systems
 - Nested Control Design
Nested Control

- Multiple control objectives
 - Coupling between objectives
 - Dynamics at different time scales

- Approach: Nested feedback control loop
Thermal Control for Real-Time Systems

- Temperature control
 - Prevent processor overheating
 - Avoid hardware throttling \(\rightarrow\) unpredictable slowdown

- Utilization control
 - Maintain real-time performance
 - Enforce schedulable utilization bound

- Uncertainties
 - Power, ambient temperature, thermal faults, execution time
Goals

- Enforce both thermal and real-time constraints
 - Temperature bound $T_b <$ hardware throttling threshold
 - CPU utilization bound $U_b <$ schedulable utilization bound

- Robust against uncertainties

- Run-time efficiency
Control-theoretic Approach

- Deal with uncertainties through feedback control
 - Rate adaptation based on temperature and utilization feedback

- Nested control structure
 - Modular: separate controllers for temperature and utilization
 - Efficiency control algorithms: $O(1)$ complexity
 - Rigorous stability and sensitivity analysis

Dynamic System Model

Temperature (controlled variable)

\[\frac{dT(t)}{dt} = -c_2(T(t) - T_0) + c_1 P(t) \]

Power

\[
\bar{P}(k) = G_p P_a U(k) + P_{idle}(1 - U(k))
\]

Utilization (control input)

(controlled variable)

Utilization Control

\[U(k + 1) = U(k) + G_u \sum_i c_i \Delta r_i \]

Tasks rates (control input)

Thermal Control

CPS Week 2013
TCUB: Thermal Control under Utilization Bound

- **Outer loop**: thermal control
 - Handle slower thermal dynamics
- **Inner loop**: CPU utilization control
 - Handle faster load dynamics

![TCUB Diagram]

- T_b, U_b, $T(k)$, $U_s(k)$, $U(k')$, $U_{ClizaCon}$, $U_{Controller}$, $\Delta r_i(k')$
Varying Power

Active power = 2 x estimate
Varying Execution Times

Execution time = 2 x estimate

TCUB

Thermal Control
Summary: Nested Control

- Example: Thermal control for real-time systems
 - Control both temperature and utilization bounds
 - Robust against uncertainties

- Nested control approach
 - Control variables with dynamics at different time scales
 - Modular design
 - Efficient control algorithm
References

- **Model Predictive Control:** J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.

- **Adaptive QoS Control Project:** http://www.cse.wustl.edu/~lu/control.html