Scheduling in WiMAX: Baseline Multi-class Simulations

Chakchai So-In, Raj Jain, and Abdel-Karim Al Tamimi
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@wustl.edu, cs5@cec.wustl.edu, and aa7@cec.wustl.edu

Presented at WiMAX Forum Meeting
Washington DC, 19th November 2007

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/schd704.htm
Overview

- Admission Control
- Fair scheduling algorithm
- Simulation results
Configuration

- Frame Duration: 5 ms
- Downlink ratio: 0.6 (DL 60%, UL 40%) ~ 1.5:1 (0.66 crashes)
- Initial Modulation Scheme: DIUC = 2 (QPSK 1/2)
 - 2 bit/symbol \times 1/2 repetition \Rightarrow 1 bit per symbol
- Bandwidth: 10 MHz (FFT: 1024)
- PUSC #DL Subchannels: 30, #UL Subchannels: 35
- ARQ Disabled (Bug: Higher loss with ARQ)
Configuration (Cont)

- Single BS with multiple SSs

BS → SS1 → SS2 → SS3 → SSn
Workload

- UL only:
 - UGS: UDP (CBR) at rate 200 kbps (500 Bytes APDU)
 - BE: UDP at rate 150 kbps or 700 kbps (500 Bytes APDU)
- UGS: MAC request: 275 bytes every 10 ms ~220 kbps
- 1 BS, 1 SS or 3 SSs
- Metrics: Application Throughput (kbps)
- Simulation starts from 20 sec to 50 sec
Error Model

- Channel model: Cost231
- Fading Model: ITU_PDP PED_A
Symbols, Tiles, and Slots (Uplink)

- **Subcarriers**
 - Subchannel = 24 subcarriers

- **Tiles**
 - = 3 symbols × 4 subcarriers

- **Slots**
 - = 6 Tiles

- **Symbols**

- **Frequency**

- **Time**
Max BW and SS Calculation (Uplink)

- 1 frame (5 ms): 44 symbols after RTG and TTG
- With DL ratio=0.6, DL=26 and UL=18 symbols
- Ranging = 2+1, Contention=1+1, 12+1 left for data
- Each tile is 3 symbols wide ⇒ 12/3 tile-columns
- Each slot is 6 tiles high ⇒ 1 subchannel
- PUSC ⇒ 35 subchannels
- Per UL Frame = 35 × 12/3 = 140 free slots
- Each slot has 72 symbol-subcarriers but only 48 for data + 24 pilots
- QPSK1/2 = 1 bit/symbol, 48 × 1/8 = 6 bytes per slot
- UL Capacity = 140 × 6 × 8 / (5 ms) = 1.344 Mbps (Max BW)
Original Scheduling Methodology

- For UGS: grant = reserved slots;
- For others: grant = request
- Problems:
 - Can’t support overload traffic
 - Does not allocate BW fairly
New Scheduling Methodology

- For UGS: grant = reserved slots;
 - Left slots = free slots after UGS
 - Fair Share = left slots/#non-UGS connections;
- For others: if (request < Fair share) grant = request, else grant = Fair share
 - Loop till no more free slots
UL Throughput for BE (2SS), 700Kbps

Old Scheduler:
\[\text{Th}_{\text{avg}} = 97.97 \text{ Kbps} \]
\[\text{Drop} = 6459 \text{ packets} \]

2nd User does not get fair share

New Scheduler:
\[\text{Th}_{\text{avg}} = 1208.03 \text{ Kbps} \]
\[\text{Drop} = 956 \text{ packets} \]

Fair Allocation
Simple Admission Control

- UGS connections are rejected if total load is more than capacity
- For UGS (220 kbps)
 - Assuming 20 kbps for packing/segmentation overhead
 - \(\Rightarrow \) Can support max 6 SS connections
Simulation Results for Simple Admission Control
Throughput: 1 SS (200 kbps)

Perfect 200 kbps

Throughput: 200 kbps, Drop: 0 packet
Throughput: 6 SS, 200 kbps

Throughput

Fluctuation due to drop

Throughput: 1185.97 kbps, Drop: 377 packets
 Supports max of 6 connections
 Throughput increases linearly
 Original simulation w/o admission control crashes on overload
Loss vs. #SSs

- Packets dropped increases linearly
- Conclusion: Admission control is effective
Simulation Results for BE Traffic
Throughput for BE (2 SSs, 100 kbps)

- Capacity = 1.33 Mbps, Load = 0.2 Mbps ⇒ Under-load Scenario
- Throughput: 189.13 kbps, Drop: 189 packets
- Statistically fair
Capacity = 1.33 Mbps, Load = 1.4 Mbps ⇒ Overload Scenario
Throughput: 1218.86 kbps, Drop: 1432 packets
Statistically fair
Summary

- Need admission control for classes with guaranteed service
 - Implemented a simple admission control
 - Allows us to do simulations with larger number of users without crashing
- Need fairness for overload situations
 - Implemented a simple fairness mechanism
 - Both UGS and BE simulations now show fair throughput
 - Old simulation used to starve some users.
Future Work

- Debug BE traffic (stop crashes)
- Study delay behavior
- Simulate other classes of traffic
- Fixed Modulation per connection
 ⇒ Allows different modulations per SS
- Fixed 1 connection per node
 ⇒ Allow multiple connections and classes per SS