Protocols for Data Center Network Virtualization and Cloud Computing

RAJ JAIN
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Tutorial at 2014 IEEE 15th International Conference on High Performance Switching and Routing, Vancouver, Canada
July 1, 2014

http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

©2014 Raj Jain
Overview

1. Part I: Network Virtualization
2. Part II: Data Center Bridging
3. Part III: Carrier Ethernet for Data Centers
   Break
4. Part IV: Virtual Bridging
5. Part V: LAN Extension and Partitioning
Part I: Network Virtualization

1. Virtualization
2. Why Virtualize?
3. Network Virtualization
4. Names, IDs, Locators
5. Interconnection Devices
Part II: Data Center Bridging

1. Residential vs. Data Center Ethernet
2. Review of Ethernet devices and algorithms
3. Enhancements to Spanning Tree Protocol
4. Virtual LANs
5. Data Center Bridging Extensions
Part III: Carrier Ethernet for Data Centers

1. Provider Bridges (PB) or Q-in-Q
2. Provider Backbone Bridges (PBB) or MAC-in-MAC
3. Provider Backbone Bridges with Traffic Engineering (PBB-TE)

Note: Although these technologies were originally developed for carriers, they are now used inside multi-tenant data centers (clouds)
Part IV: Virtual Bridging

1. Virtual Bridges to connect virtual machines
2. IEEE Virtual Edge Bridging Standard
3. Single Root I/O Virtualization (SR-IOV)
4. Aggregating Bridges and Links: VSS and vPC
5. Bridges with massive number of ports: VBE
Part V: LAN Extension and Partitioning

1. Transparent Interconnection of Lots of Links (TRILL)
2. Network Virtualization using GRE (NVGRE)
3. Virtual eXtensible LANs (VXLAN)
4. Stateless Transport Tunneling Protocol (STT)
Part I: Network Virtualization

1. Virtualization
2. Why Virtualize?
3. Network Virtualization
4. Names, IDs, Locators
5. Interconnection Devices
Virtualization

“Virtualization means that Applications can use a resource without any concern for where it resides, what the technical interface is, how it has been implemented, which platform it uses, and how much of it is available.”

-Rick F. Van der Lans
in Data Virtualization for Business Intelligence Systems
5 Reasons to Virtualize

1. Sharing: Break up a large resource
   Large Capacity or high-speed
   E.g., Servers

2. Isolation: Protection from other tenants
   E.g., Virtual Private Network

3. Aggregating: Combine many resources
   in to one, e.g., storage

4. Dynamics: Fast allocation,
   Change/Mobility, Follow the sun
   (active users) or follow the moon
   (cheap power)

5. Ease of Management ⇒ Easy
   distribution, deployment, testing
Virtualization in Computing

- **Storage:**
  - Virtual Memory ⇒ L1, L2, L3, ... ⇒ Recursive
  - Virtual CDs, Virtual Disks (RAID), Cloud storage

- **Computing:**
  - Virtual Desktop ⇒ Virtual Server ⇒ Virtual Datacenter
    - Thin Client ⇒ VMs ⇒ Cloud

- **Networking:** Plumbing of computing
  - Virtual Channels, Virtual LANs, Virtual Private Networks
Network Virtualization

1. Network virtualization allows tenants to form an overlay network in a multi-tenant network such that tenant can control:
   1. Connectivity layer: Tenant network can be L2 while the provider is L3 and vice versa
   2. Addresses: MAC addresses and IP addresses
   3. Network Partitions: VLANs and Subnets
   4. Node Location: Move nodes freely

2. Network virtualization allows providers to serve a large number of tenants without worrying about:
   1. Internal addresses used in client networks
   2. Number of client nodes
   3. Location of individual client nodes
   4. Number and values of client partitions (VLANs and Subnets)

3. Network could be a single physical interface, a single physical machine, a data center, a metro, … or the global Internet.

4. Provider could be a system owner, an enterprise, a cloud provider, or a carrier.
# Network Virtualization Techniques

<table>
<thead>
<tr>
<th>Entity</th>
<th>Partitioning</th>
<th>Aggregation/Extension/Interconnection**</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>SR-IOV</td>
<td>MR-IOV</td>
</tr>
<tr>
<td>Switch</td>
<td>VEB, VEPA</td>
<td>VSS, VBE, DVS, FEX</td>
</tr>
<tr>
<td>L2 Link</td>
<td>VLANs</td>
<td>LACP, Virtual PortChannels</td>
</tr>
<tr>
<td>L2 Network using L2</td>
<td>VLAN</td>
<td>PB (Q-in-Q), PBB (MAC-in-MAC), PBB-TE, Access-EPL, EVPL, EVP-Tree, EVPLAN</td>
</tr>
<tr>
<td>L2 Network using L3</td>
<td>NVO3, VXLAN, NVGRE, STT</td>
<td>MPLS, VPLS, A-VPLS, H-VPLS, PWoMPLS, PWoGRE, OTV, TRILL, LISP, L2TPv3, EVPN, PBB-EVPN</td>
</tr>
<tr>
<td>Router</td>
<td>VDCs, VRF</td>
<td>VRRP, HSRP</td>
</tr>
<tr>
<td>L3 Network using L1</td>
<td></td>
<td>GMPLS, SONET</td>
</tr>
<tr>
<td>L3 Network using L3*</td>
<td>MPLS, GRE, PW, IPSec</td>
<td>MPLS, T-MPLS, MPLS-TP, GRE, PW, IPSec</td>
</tr>
<tr>
<td>Application</td>
<td>ADCs</td>
<td>Load Balancers</td>
</tr>
</tbody>
</table>

*All L2/L3 technologies for L2 Network partitioning and aggregation can also be used for L3 network partitioning and aggregation, respectively, by simply putting L3 packets in L2 payloads.

**The aggregation technologies can also be seen as partitioning technologies from the provider point of view.
Names, IDs, Locators

Name: John Smith
ID: 012-34-5678
Locator:
1234 Main Street
Big City, MO 12345
USA

- Locator changes as you move, ID and Names remain the same.
- Examples:
  - Names: Company names, DNS names (Microsoft.com)
  - IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
  - Locators: Wired phone numbers, IP addresses
Interconnection Devices

LAN = Collision Domain

Extended LAN = Broadcast domain

Router

<table>
<thead>
<tr>
<th>Application</th>
<th>Gateway</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Router</td>
<td>Transport</td>
</tr>
<tr>
<td>Network</td>
<td>Bridge/Switch</td>
<td>Network</td>
</tr>
<tr>
<td>Datalink</td>
<td>Repeater/Hub</td>
<td>Datalink</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td>Physical</td>
</tr>
</tbody>
</table>
Interconnection Devices (Cont)

- **Repeater**: PHY device that restores data and collision signals
- **Hub**: Multiport repeater + fault detection and recovery
- **Bridge**: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout “extended LAN.”
- **Switch**: Multiport bridge with parallel paths
- These are functions. Packaging varies.
- No CSMA/CD in 10G and up
- No CSMA/CD in practice now even at home or at 10 Mbps
Fallacies Taught in Networking Classes

1. Ethernet is a local area network (Local ≤ 2km)
2. Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods.
3. Ethernet uses CSMA/CD.
4. Ethernet bridges use spanning tree for packet forwarding.
5. Ethernet frames are limited to 1518 bytes.
6. Ethernet does not provide any delay guarantees.
7. Ethernet has no congestion control.
8. Ethernet has strict priorities.

Ethernet has changed.
All of these are now false or are becoming false.
Summary of Part I

1. Virtualization allows applications to use resources without worrying about its location, size, format etc.
2. Ethernet’s use of IDs as addresses makes it very easy to move systems in the data center ⇒ Keep traffic on the same Ethernet
3. Cloud computing requires Ethernet to be extended globally and partitioned for sharing by a very large number of customers who have complete control over their address assignment and connectivity
4. Many of the previous limitations of Ethernet have been overcome in the last few years.
Levels of Network Virtualization

Networks consist of: **Network Interface Card (NIC)** – **L2 Links** - **L2 Bridges** - **L2 Networks** - **L3 Links** - **L3 Routers** - **L3 Networks** – **Data Centers** – **Global Internet**.

Each of these needs to be virtualized.
Part II: Data Center Bridging

1. Residential vs. Data Center Ethernet
2. Review of Ethernet devices and algorithms
3. Enhancements to Spanning Tree Protocol
4. Virtual LANs
5. Data Center Bridging Extensions
# Residential vs. Data Center Ethernet

<table>
<thead>
<tr>
<th>Residential</th>
<th>Data Center/Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance: up to 200m</td>
<td>No limit</td>
</tr>
<tr>
<td>Scale:</td>
<td>Millions of MAC Addresses</td>
</tr>
<tr>
<td>- Few MAC addresses</td>
<td>Millions of VLANs Q-in-Q</td>
</tr>
<tr>
<td>- 4096 VLANs</td>
<td>Rapid spanning tree, … (Gives 1s, need 50ms)</td>
</tr>
<tr>
<td>Protection: Spanning tree</td>
<td>Traffic engineered path</td>
</tr>
<tr>
<td>Path determined by</td>
<td>Service Level Agreement.</td>
</tr>
<tr>
<td>spanning tree</td>
<td>Rate Control.</td>
</tr>
<tr>
<td>Simple service</td>
<td>Need per-flow/per-class QoS</td>
</tr>
<tr>
<td>Priority</td>
<td>Need performance/BER</td>
</tr>
<tr>
<td>=&gt; Aggregate QoS</td>
<td></td>
</tr>
<tr>
<td>No performance/Error</td>
<td></td>
</tr>
<tr>
<td>monitoring (OAM)</td>
<td></td>
</tr>
</tbody>
</table>

Spanning Tree and its Enhancements

- Helps form a tree out of a mesh topology
- A topology change can result in 1 minute of traffic loss with STP → All TCP connections break
- Rapid Spanning Tree Protocol (RSTP)
  IEEE 802.1w-2001 incorporated in IEEE 802.1D-2004
- One tree for all VLANs
  → Common spanning tree
- Many trees
  → Multiple spanning tree (MST) protocol
  IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- One or more VLANs per tree.
Intermediate System to Intermediate System (IS-IS) is a protocol to build routing tables. Link-State routing protocol
⇒ Each node sends its connectivity (link state) information to all nodes in the network

Dijkstra’s algorithm is then used by each node to build its routing table.

Similar to OSPF (Open Shortest Path First).

OSPF is designed for IPv4 and then extended for IPv6. IS-IS is general enough to be used with any type of addresses

OSPF is designed to run on the top of IP
IS-IS is general enough to be used on any transport
⇒ Adopted by Ethernet
Shortest Path Bridging

- IEEE 802.1aq-2012
- Allows all links to be used ⇒ Better CapEx
- IS-IS link state protocol (similar to OSPF) is used to build shortest path trees for each node to every other node within the SPB domain
- Equal-cost multi-path (ECMP) used to distribute load

Refs:
- Washington University in St. Louis http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

©2014 Raj Jain
What is a LAN?

- LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs
Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN

- LAN membership defined by the network manager
  \[ \Rightarrow \text{Virtual} \]
IEEE 802.1Q-2011 Tag

- Tag Protocol Identifier (TPI)
- Priority Code Point (PCP): 3 bits = 8 priorities 0..7 (High)
- Canonical Format Indicator (CFI): 0 ⇒ Standard Ethernet, 1 ⇒ IBM Token Ring format (non-canonical or non-standard)
- CFI now replaced by Drop Eligibility Indicator (DEI)
- VLAN Identifier (12 bits ⇒ 4095 VLANs)
- Switches forward based on MAC address + VLAN ID
  Unknown addresses are flooded.

<table>
<thead>
<tr>
<th>Untagged Frame</th>
<th>32b IEEE 802.1Q-2011 Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>SA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tagged Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
</tr>
<tr>
<td>48b</td>
</tr>
</tbody>
</table>

Data Center Bridging (DCB)

- Goal: To enable storage traffic over Ethernet
- Four Standards:
  - Priority-based Flow Control (IEEE 802.1Qbb-2011)
  - Enhanced Transmission Selection (IEEE 802.1Qaz-2011)
  - Congestion Control (IEEE 802.1Qau-2010)
  - Data Center Bridging Exchange (IEEE 802.1Qaz-2011)

Ref: M. Hagen, “Data Center Bridging Tutorial,” [http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf](http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf)

Ethernet Flow Control: Pause Frame

- A receiving switch can stop the adjoining sending switch by sending a “Pause” frame. Stops the sender from sending any further information for a time specified in the pause frame.
- The frame is addressed to a standard (well-known) multicast address. This address is acted upon but not forwarded.
- Stops all traffic. Causes congestion backup.

Priority-based Flow Control (PFC)

- Priority 0
- Priority 1
- Priority 7

IEEE 802.1Qbb-2011 allows any single priority to be stopped. Others keep sending.


Enhanced Transmission Selection

- IEEE 802.1Qaz-2011
- Goal: Guarantee bandwidth for applications sharing a link
- Traffic is divided into 8 classes (not priorities)
- The classes are grouped.
- Standard requires min 3 groups: 1 with PFC (Storage with low loss), 1 W/O PFC (LAN), 1 Strict Priority (Inter-process communication and VOIP with low latency)
ETS (Cont)

- Bandwidth allocated per class group in 1% increment but 10% precision (±10% error).
- Max 75% allocated ⇒ Min 25% best effort
- Fairness within a group
- All unused bandwidth is available to all classes wanting more bandwidth. Allocation algorithm **not** defined.

**Example:** Group 1=20%, Group 2=30%

---

Washington University in St. Louis  
http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm  
©2014 Raj Jain
Quantized Congestion Notification (QCN)

- IEEE 802.1Qau-2010 Dynamic Congestion Notification
- A source quench message is sent by the congested switch direct to the source. The source reduces its rate for that flow.
- Sources need to keep per-flow states and control mechanisms
- Easy for switch manufacturers but complex for hosts. Implemented in switches but not in hosts ⇒ Not effective.
- The source may be a router in a subnet and not the real source ⇒ Router will drop the traffic. QCN does not help in this case.

DCBX

- Data Center Bridging eXchange, IEEE 802.1Qaz-2011
- Uses LLDP (Link Level Discovery Protocol) to negotiate quality metrics and capabilities for Priority-based Flow Control, Enhanced Transmission Selection, and Quantized Congestion Notification
- New TLV’s
  - Priority group definition
  - Group bandwidth allocation
  - PFC enablement per priority
  - QCN enablement
  - DCB protocol profiles
  - FCoE and iSCSI profiles
Summary of Part II

1. Ethernet’s use of IDs as addresses makes it very easy to move systems in the data center ⇒ Keep traffic on the same Ethernet
2. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
3. VLANs allow different non-trusting entities to share an Ethernet network
4. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control
Part III: Carrier Ethernet for Data Centers

1. Provider Bridges (PB) or Q-in-Q
2. Provider Backbone Bridges (PBB) or MAC-in-MAC
3. Provider Backbone Bridges with Traffic Engineering (PBB-TE)

Note: Although these technologies were originally developed for carriers, they are now used inside multi-tenant data centers (clouds)
Ethernet Provider Bridge (PB)

- IEEE 802.1ad-2005 incorporated in IEEE 802.1Q-2011
- Problem: Multiple customers may have the same VLAN ID. How to keep them separate?
- Solutions:
  1. VLAN translation: Change customer VLANs to provider VLANs and back
  2. VLAN Encapsulation: Encapsulate customer frames

Provider Bridge (Cont)

- Q-in-Q Encapsulation: Provider inserts a service VLAN tag
  VLAN translation Changes VLANs using a table
- Allows 4K customers to be serviced. Total 16M VLANs
- 8 Traffic Classes using Differentiated Services Code Points (DSCP) for Assured Forwarding
Provider Backbone Network (PBB)

- Problem: Number of MAC addresses passing through backbone bridges is too large for all core bridge to remember. Broadcast and flooded (unknown address) frames give unwanted traffic and security issues.

- Solution: IEEE 802.1ah-2008 now in 802.1Q-2011

- Add new source/destination MAC addresses pointing to ingress backbone bridge and egress backbone bridge.

  \[ \Rightarrow \text{Core bridges only know edge bridge addresses} \]
**MAC-in-MAC Frame Format**

- Provider backbone edge bridges (PBEB) forward to other PBEB’s and learn customer MAC addresses
  \( \Rightarrow \) PB _core_ bridges do not learn customer MACs

- B-DA = Destination backbone bridge address Determined by Customer Destination Address

- Backbone VLANs delimit the broadcast domains in the backbone

- PBB Core switches forward based on Backbone Destination Bridge Address and Backbone-VLAN ID (60 bits) Similar to 802.1ad Q-in-Q. Therefore, same EtherType.
PBB Service Instance

- Service instance ID (I-SID) indicates a specific flow
  - All frames on a specific port, or
  - All frames on a specific port with a specific service VLAN, or
  - All frames on a specific port with a specific service VLAN and a specific customer VLAN

<table>
<thead>
<tr>
<th>SID</th>
<th>Definition</th>
<th>B-VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port 1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Port 2, S-VLAN=10</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>Port 2, S-VLAN=20</td>
<td>6</td>
</tr>
<tr>
<td>401</td>
<td>Port 2, S-VLAN=30, C-VLAN=100</td>
<td>4</td>
</tr>
<tr>
<td>502</td>
<td>Port 3, S-VLAN=40, C-VLAN=200</td>
<td>4</td>
</tr>
</tbody>
</table>
Connection Oriented Ethernet

- Connectionless: Path determined at forwarding
  ⇒ Varying QoS
- Connection Oriented: Path determined at provisioning
  - Path provisioned by management ⇒ Deterministic QoS
    - No spanning tree, No MAC address learning,
    - Frames forwarded based on VLAN Ids and Backbone bridges addresses
  - Path not determined by customer MAC addresses and other customer fields ⇒ More Secure
  - Reserved bandwidth per EVC
  - Pre-provisioned Protection path ⇒ Better availability
PBB-TE

- Provider Backbone Bridges with Traffic Engineering (PBB-TE)
- IEEE 802.1Qay-2009 now in 802.1Q-2011
- Provides connection oriented P2P (E-Line) Ethernet service
- For PBB-TE traffic VLANs:
  - Turn off MAC learning
  - Discard frames with unknown address and broadcasts.
    - No flooding
  - Disable Spanning Tree Protocol.
  - Add protection path switching for each direction of the trunk
- Switch forwarding tables are administratively populated using management
- Same frame format as with MAC-in-MAC. No change.
Guarantees QoS $\Rightarrow$ No need for MPLS or SONET/SDH

UNI traffic is classified by Port, Service VLAN ID, Customer VLAN ID, priority, Unicast/Multicast

UNI ports are *policed* $\Rightarrow$ Excess traffic is dropped
No policing at NNI ports. Only remarking, if necessary.

Traffic may be marked and remarked at both UNI and NNI
Ethernet Tagged Frame Format Evolution

- Original Ethernet

- IEEE 802.1Q VLAN

- IEEE 802.1ad PB

- IEEE 802.1ah PBB or 802.1Qay PBB-TE

<table>
<thead>
<tr>
<th>Tag Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer VLAN</td>
<td>8100</td>
</tr>
<tr>
<td>Service VLAN or Backbone VLAN</td>
<td>88A8</td>
</tr>
<tr>
<td>Backbone Service Instance</td>
<td>88E7</td>
</tr>
</tbody>
</table>
## Comparison of Technologies

<table>
<thead>
<tr>
<th></th>
<th>Basic Ethernet</th>
<th>MPLS</th>
<th>PB</th>
<th>PBB-TE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Resilience</strong></td>
<td>No</td>
<td>Protection</td>
<td>SPB/LAG</td>
<td>Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast Reroute</td>
<td></td>
<td>Fast Reroute</td>
</tr>
<tr>
<td><strong>Security</strong></td>
<td>No</td>
<td>Circuit Based</td>
<td>VLAN</td>
<td>Circuit Based</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Multicast</strong></td>
<td>Yes</td>
<td>Inefficient</td>
<td>Yes</td>
<td>No. P2P only</td>
</tr>
<tr>
<td><strong>QoS</strong></td>
<td>Priority</td>
<td>Diffserve</td>
<td>Diffserve+</td>
<td>Diffserve+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Guaranteed</td>
<td>Guaranteed</td>
</tr>
<tr>
<td><strong>Legacy Services</strong></td>
<td>No</td>
<td>Yes (PWE3)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>Traffic Engineering</strong></td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Scalability</strong></td>
<td>Limited</td>
<td>Complex</td>
<td>Q-in-Q</td>
<td>Q-in-Q+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mac-in-MAC</td>
</tr>
<tr>
<td><strong>Cost</strong></td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td><strong>OAM</strong></td>
<td>No</td>
<td>Some</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Ref: Bonafede
Washington University in St. Louis  
©2014 Raj Jain
Summary of Part III

1. PB Q-in-Q extension allows Internet/Cloud service providers to allow customers to have their own VLAN IDs
2. PBB MAC-in-MAC extension allows customers/tenants to have their own MAC addresses and allows service providers to not have to worry about them in the core switches
3. PBB allows very large Ethernet networks spanning over several backbone carriers
4. PBB-TE extension allows connection oriented Ethernet with QoS guarantees and protection
Part IV: Virtual Bridging

1. Virtual Bridges to connect virtual machines
2. IEEE Virtual Edge Bridging Standard
3. Single Root I/O Virtualization (SR-IOV)
4. Aggregating Bridges and Links: VSS and vPC
5. Bridges with massive number of ports: VBE
vSwitch

- **Problem**: Multiple VMs on a server need to use one physical network interface card (pNIC)
- **Solution**: Hypervisor creates multiple vNICs connected via a virtual switch (vSwitch)
- pNIC is controlled by hypervisor and not by any individual VM
- **Notation**: From now on prefixes p and v refer to physical and virtual, respectively. For VMs only, we use upper case V.

Washington University in St. Louis  
http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm  
©2014 Raj Jain
Virtual Bridging

Where should most of the tenant isolation take place?

1. VM vendors: S/W NICs in Hypervisor w Virtual Edge Bridge (VEB) (overhead, not ext manageable, not all features)

2. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade)

3. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus
Virtual Edge Bridge

- IEEE 802.1Qbg-2012 standard for vSwitch
- Two modes for vSwitches to handle local VM-to-VM traffic:
  - Virtual Edge Bridge (VEB): Switch internally.
  - Virtual Ethernet Port Aggregator (VEPA): Switch externally
- VEB
  - could be in a hypervisor or network interface card
  - may learn or may be configured with the MAC addresses
  - VEB may participate in spanning tree or may be configured
  - Advantage: No need for the external switch in some cases
Virtual Ethernet Port Aggregator (VEPA)

- VEPA simply relays all traffic to an external bridge
- External bridge forwards the traffic. Called “Hairpin Mode.”
  Returns local VM traffic back to VEPA
  Note: Legacy bridges do not allow traffic to be sent back to the incoming port within the same VLAN

- **VEPA Advantages:**
  - Visibility: External bridge can see VM to VM traffic.
  - Policy Enforcement: Better. E.g., firewall
  - Performance: Simpler vSwitch ⇒ Less load on CPU
  - Management: Easier

- Both VEB and VEPA can be implemented on the same NIC in the same server and can be cascaded.

Ref: HP, “Facts about the IEEE 802.1Qbg proposal,” Feb 2011, 6pp.,
Combining Bridges

- **Problem:**
  - Number of VMs is growing very fast
  - Need switches with very large number of ports
  - Easy to manage one bridge than 100 10-port bridges
  - How to make very large switches ~1000 ports?

- **Solutions:** Multiple pSwitches to form a single switch
  1. Fabric Extension (FEX)
  2. Virtual Bridge Port Extension (VBE)
Fabric Extenders

- Fabric extenders (FEX) consist of ports that are managed by a remote parent switch.
- 12 Fabric extenders, each with 48 host ports, connected to a parent switch via 4-16 10 Gbps interfaces to a parent switch provide a virtual switch with 576 host ports ⇒ Chassis Virtualization.
- All software updates/management, forwarding/control plane is managed centrally by the parent switch.
- A FEX can have an active and a standby parent.


Virtual Bridge Port Extension (VBE)

- IEEE 802.1BR-2012 standard for fabric extender functions
- Specifies how to form an extended bridge consisting of a controlling bridge and Bridge Port Extenders
- Extenders can be cascaded.
- Some extenders may be in a vSwitch in a server hypervisor.
- All traffic is relayed by the controlling bridge
  ⇒ Extended bridge is a bridge.
Summary of Part IV

1. Network virtualization includes virtualization of NICs, Bridges, Routers, and L2 networks.

2. Virtual Edge Bridge (VEB) vSwitches switch internally while Virtual Ethernet Port Aggregator (VEPA) vSwitches switch externally.

3. Fabric Extension and Virtual Bridge Extension (VBE) allows creating switches with a large number of ports using port extenders (which may be vSwitches)
Part V: LAN Extension and Partitioning

1. Transparent Interconnection of Lots of Links (TRILL)
2. Network Virtualization using GRE (NVGRE)
3. Virtual eXtensible LANs (VXLAN)
4. Stateless Transport Tunneling Protocol (STT)
Challenges of LAN Extension

- **Broadcast storms**: Unknown and broadcast frames may create excessive flood
- **Loops**: Easy to form loops in a large network.
- **STP Issues**:
  - High spanning tree diameter: More than 7.
  - Root can become bottleneck and a single point of failure
  - Multiple paths remain unused
- **Tromboning**: Dual attached servers and switches generate excessive cross traffic
- **Security**: Data on LAN extension must be encrypted
TRILL

- Transparent Interconnection of Lots of Links
- Allows a large campus to be a single extended LAN
- LANs allow free mobility inside the LAN but:
  - Inefficient paths using Spanning tree
  - Inefficient link utilization since many links are disabled
  - Inefficient link utilization since multipath is not allowed.
  - Unstable: small changes in network ⇒ large changes in spanning tree
- IP subnets are not good for mobility because IP addresses change as nodes move and break transport connections, but:
  - IP routing is efficient, optimal, and stable
- Solution: Take the best of both worlds
  ⇒ Use MAC addresses and IP routing

Ref: RFCs 5556, 6325, 6326, 6327, 6361, 6439
TRILL Architecture

- Routing Bridges (RBridges) encapsulate L2 frames and route them to destination RBridges which decapsulate and forward
- Header contains a hop-limit to avoid looping
- RBridges run IS-IS to compute pair-wise optimal paths for unicast and distribution trees for multicast
- RBridge learn MAC addresses by source learning and by exchanging their MAC tables with other RBridges
- Each VLAN on the link has one (and only one) designated RBridge using IS-IS election protocol

Ref: R. Perlman, "RBridges: Transparent Routing," Infocom 2004
### TRILL Encapsulation Format

<table>
<thead>
<tr>
<th>Outer Header</th>
<th>TRILL header</th>
<th>Original 802.1Q packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Res.</td>
<td>Multi-Destination</td>
</tr>
<tr>
<td>2b</td>
<td>2b</td>
<td>1b</td>
</tr>
<tr>
<td>Options</td>
<td>Length</td>
<td>Hops to Live</td>
</tr>
<tr>
<td>5b</td>
<td>6b</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>Egress RBridge</td>
<td>Ingress RBridge</td>
</tr>
<tr>
<td>16b</td>
<td>16b</td>
<td></td>
</tr>
</tbody>
</table>

- For outer headers both PPP and Ethernet headers are allowed. PPP for long haul.
- Outer Ethernet header can have a VLAN ID corresponding to the VLAN used for TRILL.
- Priority bits in outer headers are copied from inner VLAN.
TRILL Features

- Transparent: No change to capabilities. Broadcast, Unknown, Multicast (BUM) support. Auto-learning.
- Zero Configuration: RBridges discover their connectivity and learn MAC addresses automatically.
- Hosts can be multi-homed
- VLANs are supported
- Optimized route
- No loops
- Legacy bridges with spanning tree in the same extended LAN
TRILL: Summary

- TRILL allows a large campus to be a single Extended LAN
- Packets are encapsulated and routed using IS-IS routing
GRE

- Generic Routing Encapsulation (RFC 1701/1702)
- Generic ⇒ X over Y for any X or Y
- Over IPv4, GRE packets use a protocol type of 47
- Optional Checksum, Loose/strict Source Routing, Key
- Key is used to authenticate the source
- Recursion Control: # of additional encapsulations allowed. 0 ⇒ Restricted to a single provider network ⇒ end-to-end
- Offset: Points to the next source route field to be used
- IP or IPSec are commonly used as delivery headers

<table>
<thead>
<tr>
<th>Checksum Present</th>
<th>Routing Present</th>
<th>Key Present</th>
<th>Seq. # Present</th>
<th>Strict Source Route</th>
<th>Recursion Control</th>
<th>Flags</th>
<th>Ver. #</th>
<th>Prot. Type</th>
<th>Offset</th>
<th>Checksum</th>
<th>Key</th>
<th>Seq. #</th>
<th>Source Routing List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>3b</td>
<td>5b</td>
<td>3b</td>
<td>16b</td>
<td>16b</td>
<td>16b</td>
<td>32b</td>
<td>32b</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Washington University in St. Louis  
http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm

©2014 Raj Jain
Network Virtualization using GRE
⇒ Ethernet over GRE over IP (point-to-point)
A unique 24-bit Virtual Subnet Identifier (VSID) is used as the lower 24-bits of GRE key field ⇒ $2^{24}$ tenants can share
Unique IP multicast address is used for BUM (Broadcast, Unknown, Multicast) traffic on each VSID
Equal Cost Multipath (ECMP) allowed on point-to-point tunnels

Ref: M. Sridharan, “MVGRE: Network Virtualization using GRE,” Aug 2013,
NVGRE (Cont)

- In a cloud, a pSwitch or a vSwitch can serve as tunnel endpoint
- VMs need to be in the same VSID to communicate
- VMs in different VSIDs can have the same MAC address
- Inner IEEE 802.1Q tag, if present, is removed.


VXLAN

- Virtual eXtensible Local Area Networks (VXLAN)
- L3 solution to isolate multiple tenants in a data center (L2 solution is Q-in-Q and MAC-in-MAC)
- Developed by VMware. Supported by many companies in IETF NVO3 working group
- Problem:
  - 4096 VLANs are not sufficient in a multi-tenant data center
  - Tenants need to control their MAC, VLAN, and IP address assignments ⇒ Overlapping MAC, VLAN, and IP addresses
  - Spanning tree is inefficient with large number of switches ⇒ Too many links are disabled
  - Better throughput with IP equal cost multipath (ECMP)


VXLAN Architecture

- Create a virtual L2 overlay (called VXLAN) over L3 networks
- $2^{24}$ VXLAN Network Identifiers (VNIs)
- Only VMs in the same VXLAN can communicate
- vSwitches serve as VTEP (VXLAN Tunnel End Point).
  - Encapsulate L2 frames in UDP over IP and send to the destination VTEP(s).
- Segments may have overlapping MAC addresses and VLANs but L2 traffic never crosses a VNI
VXLAN Deployment Example

Example: Three tenants. 3 VNIs. 4 Tunnels for unicast. + 3 tunnels for multicast (not shown)
**VXLAN Encapsulation Format**

- **Outer VLAN tag is optional.**
  - Used to isolate VXLAN traffic on the LAN

- **Source VM ARPs to find Destination VM’s MAC address.**
  - All L2 multicasts/unknown are sent via IP multicast.
  - Destination VM sends a standard IP unicast ARP response.

- **Destination VTEP learns inner-Src-MAC-to-outer-src-IP mapping**
  - Avoids unknown destination flooding for returning responses

![VXLAN Encapsulation Format Diagram](http://www.cse.wustl.edu/~jain/tutorials/nv_hs14.htm)

<table>
<thead>
<tr>
<th>Dest. VTEP MAC</th>
<th>Source VTEP MAC</th>
<th>Outer VLAN</th>
<th>Dest. VTEP IP</th>
<th>Source VTEP IP</th>
<th>UDP Header</th>
<th>VXLAN Header</th>
<th>Dest VM MAC</th>
<th>Source VM MAC</th>
<th>Tenant VLAN</th>
<th>Ethernet Payload</th>
</tr>
</thead>
</table>

Only key fields are shown
VXLAN Encapsulation Format (Cont)

- IGMP is used to prune multicast trees
- 7 of 8 bits in the flag field are reserved. I flag bit is set if VNI field is valid
- UDP source port is a hash of the inner MAC header ⇒ Allows load balancing using Equal Cost Multi Path using L3-L4 header hashing
- VMs are unaware that they are operating on VLAN or VXLAN
- VTEPs need to learn MAC address of other VTEPs and of client VMs of VNIs they are handling.
- A VXLAN gateway switch can forward traffic to/from non-VXLAN networks. Encapsulates or decapsulates the packets.
VXLAN: Summary

- VXLAN solves the problem of multiple tenants with overlapping MAC addresses, VLANs, and IP addresses in a cloud environment.
- A server may have VMs belonging to different tenants
- No changes to VMs. Hypervisors responsible for all details.
- Uses UDP over IP encapsulation to isolate tenants
Stateless Transport Tunneling Protocol (STT)

- Ethernet over TCP-Like over IP tunnels. GRE, IPSec tunnels can also be used if required.
- Tunnel endpoints may be inside the end-systems (vSwitches)
- Designed for large storage blocks 64kB. Fragmentation allowed.
- Most other overlay protocols use UDP and disallow fragmentation ⇒ Maximum Transmission Unit (MTU) issues.
- TCP-Like: Stateless TCP ⇒ Header identical to TCP (same protocol number 6) but no 3-way handshake, no connections, no windows, no retransmissions, no congestion state ⇒ Stateless Transport (recognized by standard port number).
- Broadcast, Unknown, Multicast (BUM) handled by IP multicast tunnels

LSO and LRO

- Large Send Offload (LSO): Host hands a large chunk of data to NIC and meta data. NIC makes MSS size segments, adds checksum, TCP, IP, and MAC headers to each segment.
- Large Receive Offload (LRO): NICs attempt to reassemble multiple TCP segments and pass larger chunks to the host. Host does the final reassembly with fewer per packet operations.
- STT takes advantage of LSO and LRO features, if available.
- Using a protocol number other than 6 will not allow LSO/LRO to handle STT
STT Optimizations

- Large data size: Less overhead per payload byte
- Context ID: 64-bit tunnel end-point identifier
- Optimizations:
  - 2-byte padding is added to Ethernet frames to make its size a multiple of 32-bits.
  - Source port is a hash of the inner header ⇒ ECMP with each flow taking different path and all packets of a flow taking one path
- No protocol type field ⇒ Payload assumed to be Ethernet, which can carry any payload identified by protocol type.
STT Frame Format

- 16-Bit MSS $\Rightarrow 2^{16}$ B = 64K Byte maximum
- L4 Offset: From the of STT header to the start of encapsulated L4 (TCP/UDP) header $\Rightarrow$ Helps locate payload quickly
- Checksum Verified: Checksum covers entire payload and valid
- Checksum Partial: Checksum only includes TCP/IP headers

```
<table>
<thead>
<tr>
<th>IP Header</th>
<th>TCP-Like Header</th>
<th>STT Header</th>
<th>STT Payload</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Flags</th>
<th>L4 Offset</th>
<th>Reserved</th>
<th>Maximum Segment Size</th>
<th>Priority Code Point</th>
<th>VLAN ID Valid</th>
<th>Context ID</th>
<th>VLAN ID</th>
<th>Padding</th>
</tr>
</thead>
<tbody>
<tr>
<td>8b</td>
<td>8b</td>
<td>8b</td>
<td>8b</td>
<td>16b</td>
<td>3b</td>
<td>1b</td>
<td>64b</td>
<td>12b</td>
<td>16b</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Checksum Verified</th>
<th>Checksum Partial</th>
<th>IP Version IPv4</th>
<th>TCP Payload</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>1b</td>
<td>4b</td>
</tr>
</tbody>
</table>
```

TCP-Like Header in STT

- Destination Port: Standard to be requested from IANA
- Source Port: Selected for efficient ECMP
- Ack Number: STT payload sequence identifier. Same in all segments of a payload
- Sequence Number (32b): Length of STT Payload (16b) + offset of the current segment (16b) ⇒ Correctly handled by NICs with Large Receive Offload (LRO) feature
- No acks. STT delivers partial payload to higher layers.
- Higher layer TCP can handle retransmissions if required.
- Middle boxes will need to be programmed to allow STT pass through

<table>
<thead>
<tr>
<th>Source Port (Random)</th>
<th>Dest. Port (Standard)</th>
<th>STT Payload Length</th>
<th>Segment Offset</th>
<th>Payload Sequence #</th>
<th>Data Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>16b</td>
<td>16b</td>
<td>16b+16b</td>
<td>32b</td>
<td>32b</td>
<td>16b</td>
</tr>
</tbody>
</table>

*Different meaning than TCP

Washington University in St. Louis  
©2014 Raj Jain
STT Summary

- STT solves the problem of *efficient* transport of large 64 KB storage blocks
- Uses Ethernet over TCP-Like over IP tunnels
- Designed for software implementation in hypervisors
Summary of Part V

1. TRILL allows Ethernet to span a large campus using IS-IS encapsulation
2. NVGRE uses Ethernet over GRE for L2 connectivity.
3. VXLAN uses Ethernet over UDP over IP
4. STT uses Ethernet over TCP-like stateless protocol over IP.
Overall Summary

1. Virtualization allows applications to use resources without worrying about its location, size, format etc.

2. Ethernet’s use of IDs as addresses makes it very easy to move systems in the data center ⇒ Keep traffic on the same Ethernet

3. Cloud computing requires Ethernet to be extended globally and partitioned for sharing by a very large number of customers who have complete control over their address assignment and connectivity and requires rapid provisioning of a large number of virtual NICs and switches

4. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
Overall Summary (Cont)

5. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control. Make Ethernet suitable for storage traffic.

6. PB Q-in-Q extension allows Internet/Cloud service providers to allow customers to have their own VLAN IDs.

7. PBB MAC-in-MAC extension allows customers/tenants to have their own MAC addresses and allows service providers to not have to worry about them in the core switches.

8. PBB-TE extension allows connection oriented Ethernet with QoS guarantees and protection.

9. Virtual Edge Bridge (VEB) vSwitches switch internally while Virtual Ethernet Port Aggregator (VEPA) vSwitches switch externally.
Overall Summary (Cont)

10. SR-IOV technology allows multiple virtual NICs via PCI and avoids the need for internal vSwitch.

11. Fabric Extension and Virtual Bridge Extension (VBE) allows creating switches with a large number of ports using port extenders (which may be vSwitches).

12. TRILL allows Ethernet to span a large campus using IS-IS encapsulation.

13. NVGRE uses Ethernet over GRE for L2 connectivity.

14. VXLAN uses Ethernet over UDP over IP.

15. STT uses Ethernet over TCP-like stateless protocol over IP.
Acronyms

- ADC  Application Delivery Controller
- API  Application Programming Interface
- ARP  Address Resolution Protocol
- BER  Bit Error Rate
- BUM  Broadcast, Unknown, Multicast
- CapEx  Capital Expenditure
- CD  Compact Disk
- CE  Customer Edge
- CFI  Canonical Format Indicator
- CFM  Connectivity Fault Management
- CPU  Central Processing Unit
- CRC  Cyclic Redundancy Check
- CSMA/CD  Carrier Sense Multiple Access with Collision Detection
- DA  Destination Address
- DCB  Data Center Bridging
- DCBX  Data Center Bridging Exchange
Acronyms (Cont)

- DEI  Drop Eligibility Indicator
- DNS  Domain Name Service
- DSCP Differentiated Services Code Points
- DVS  Distributed Virtual Switch
- ECMP Equal-cost multi-path
- ENNI Ethernet Network to Network Interface
- EPL  Ethernet Private Line
- ETS  Enhanced Transmission Service
- EVC  Ethernet Virtual Channel
- EVP-Tree Ethernet Virtual Private Tree
- EVPL Ethernet Virtual Private Line
- EVPLAN Ethernet Virtual Private LAN
- EVPN Ethernet Virtual Private Network
- FCoE  Fibre Channel over Ethernet
- FEX  Fabric Extension
- GB  Giga Byte
Acronyms (Cont)

- **GMPLS**: Generalized Multi-Protocol Label Switching
- **GRE**: Generic Routing Encapsulation
- **HSRP**: Hot Standby Router Protocol
- **IANA**: Internet Addressing and Naming Authority
- **ID**: Identifier
- **IEEE**: Institution of Electrical and Electronic Engineers
- **IETF**: Internet Engineering Task Force
- **IGMP**: Internet Group Multicast Protocol
- **IO**: Input/Output
- **IP**: Internet Protocol
- **IPSec**: Secure IP
- **IPv4**: Internet Protocol Version 4
- **IPv6**: Internet Protocol Version 6
- **IS-IS**: Intermediate System to Intermediate System
- **iSCSI**: Internet Small Computer Storage Interconnect
- **iSCSI**: Internet Small Computer Storage Interconnect
Acronyms (Cont)

- kB Kilo Byte
- LACP Link Aggregation Control Protocol
- LAN Local Area Network
- LISP Locator-ID Split Protocol
- LLDP Link Layer Discovery Protocol
- LRO Large Receive Offload
- LSO Large Send Offload
- MAC Media Access Control
- MDI Media Dependent Interface
- MPLS Multi-Protocol Label Switching
- MR-IOV Multi-Root I/O Virtualization
- MSB Most Significant Byte
- MSS Maximum Segment Size
- MST Multiple spanning tree
- MSTP Multiple Spanning Tree Protocol
- MTU Maximum Transmission Unit
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVGRE</td>
<td>Network Virtualization Using GRE</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>NNI</td>
<td>Network-to-Network Interface</td>
</tr>
<tr>
<td>NVO3</td>
<td>Network Virtualization Overlay using L3</td>
</tr>
<tr>
<td>OAM</td>
<td>Operation, Administration, and Management</td>
</tr>
<tr>
<td>OpEx</td>
<td>Operation Expenses</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>OTV</td>
<td>Overlay Transport Virtualization</td>
</tr>
<tr>
<td>PB</td>
<td>Provider Bridge</td>
</tr>
<tr>
<td>PBB-TE</td>
<td>Provider Backbone Bridge with Traffic Engineering</td>
</tr>
<tr>
<td>PBB</td>
<td>Provider Backbone Bridge</td>
</tr>
<tr>
<td>PBEB</td>
<td>Provider Backbone Edge Bridge</td>
</tr>
<tr>
<td>PCI-SIG</td>
<td>PCI Special Interest Group</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PCIe</td>
<td>PCI Express</td>
</tr>
<tr>
<td>PCP</td>
<td>Priority Code Point</td>
</tr>
</tbody>
</table>
Acronyms (Cont)

- PE  Provider Edge
- PF  Physical Function
- PFC Priority-based Flow Control
- PHY Physical Layer
- pM  Physical Machine
- pNIC Physical Network Interface Card
- PPP Point-to-Point Protocol
- pSwitch Physical Switch
- PW  Pseudo wire
- PWoGRE Pseudo wire over Generic Routing Encapsulation
- PWoMPLS Pseudo wire over Multi Protocol Label Switching
- QCN Quantized Congestion Notification
- QoS Quality of Service
- RAID Redundant Array of Independent Disks
- RBridge Routing Bridge
- RFC Request for Comments
Acronyms (Cont)

- RSTP: Rapid Spanning Tree Protocol
- SA: Source Address
- SDH: Synchronous Digital Hierarchy
- SID: Service Identifier
- SNIA: Storage Network Industry Association
- SONET: Synchronous Optical Network
- SPB: Shortest Path Bridging
- SR-IOV: Single Root I/O Virtualization
- STP: Spanning Tree Protocol
- STT: Stateless Transport Tunneling Protocol
- TCP: Transmission Control Protocol
- TE: Traffic Engineering
- TLV: Type-Length-Value
- TP: Transport Protocol
- TPI: Tag Protocol Identifier
- TRILL: Transparent Interconnection of Lots of Links
Acronyms (Cont)

- TV  Television
- UCA  Use Customer Address
- UDP  User Datagram Protocol
- UNI  User Network Interface
- VBE  Virtual Bridge Port Extension
- VDC  Virtual Device Contexts
- VEB  Virtual Edge Bridge
- VEM  Virtual Ethernet Module
- VEPA  Virtual Ethernet Port Aggregator
- VF  Virtual Function
- VID  VLAN ID
- VLAN  Virtual LAN
- VM  Virtual Machine
- VNI  Virtual Network ID
- vNIC  Virtual Network Interface Card
- VoD  Video on Demand
Acronyms (Cont)

- VOIP  Voice over IP
- vPC   Virtual Port Channels
- VPLS  Virtual Private LAN Service
- VPN   Virtual Private Network
- VRF   Virtual Routing and Forwarding
- VRRP  Virtual Router Redundancy Protocol
- VSID  Virtual Subnet Identifier
- VSM   Virtual Switch Module
- VSS   Virtual Switch System
- vSwitch Virtual Switch
- VTEP  Virtual Tunnel End Point
- VXLAN Virtual Extensible LAN